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Preface

This project was born after I've used several other network filesystems and
realized that all these filesystems provide the basic things for file sharing, but
real security couldn’t be achieved with them. Especially for sharing private
data over the internet transparently, there is no filesystem protocol available
which someone would dare to use in such a hostile network environment.
After thinking some time about how an acceptable alternative must look like
and the time to choose a topic for my diplomathesis came closer, I finally
decided that it would be great to combine both, my diplomathesis and a

project where I can have a lot of fun.

I've been a fan of the Linux system and related open source software for
at least four years. I’ve implemented several other projects on this beautiful
piece of software, but until I began starting this work, a project related to the
kernel was not among them. So learing something about the implementation
of the kernel and digging through the implementation of an operating system
was a big motivation for me. Thanks to all people who contributed to the
Linux kernel and the Latex word processor. Software is really best when it’s

free.

Finally I would like to thank Mr. Kern, my professor who supported me
a lot while writing this document. And also a big ”thank you” to Heidi van
der Hor and Nina Scheffer, who helped me fixing grammatical bugs in the

final version of this document ;-)
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Chapter 1
Motivation

After reading the title of this diplomathesis many of you surely asked them-
selves: ”Why implementing a new file system? There are already numerous
implementations of different file systems and some of them are even useful

to share files over a network!”

Sure, but I will show you that none of these fulfills the requirements of a
modern file system with regard to security and in more detail authentication
and encryption. Especially if you want to exchange data over open networks
like the internet and won’t miss the comfort you get by integrating exter-
nal storage space transparently into the file system of your own computer.
Then you will realize rather quickly that the security measures in form of
authentication provided by file system implementations today are relatively
easy to bypass. I also don’t know any filesystem which implements strong

encryption to protect your data from eavesdropship.

I will show you, why security didn’t play a key role in the specification of
file sharing protocols we use today and point you to the consequences we are
now suffering from. Furthermore I will try to sensitize you for the increasing
surveillance of your data traffic either by companies or the government in

your country or in any foreign countries.



1.1 History of networking

Remember the time in the 1980s, when personal computer became cheap

enough to be deployed widely...

It was the time of a major change in the IT sector when computer devices,
which were small enough to be placed on the desktops, began to super-
sede the huge and complex mainframe machines. Also, the architecture of
this devices was far away from being superior, the openness and their good
price/performance ratio gave them a major boost in the number of sold units.
At first, the personal computers were only used as a better replacement for
typewriters and for the spreadsheet analysis. But already at this point and
especially in companies, the need arose to share the generated files in a faster
way then moving external media from one machine to another to enhance

productivity.

This was the starting shot to widespread use of networking technology inside
larger companies. Several companies in the I'T sector, who also created oper-
ating systems, saw their chance to get into a developing market and began to
create protocols - partly on top of own proprietary transport protocols - to
satisfy the needs of their customers. The protocols which I am refering to are
Novell’s NCPFS (Netware Core Protocol File System), Sun’s NFS (Network
File System) and later Microsoft’s file system based on the SMB (Service
Message Block) protocol. All this protocols were designed to be used in a
closed environment such as a corporate network or for connecting two ma-
chines at home. Therefore security was only a very small aspect besides low

latency and high throughput.

Nowadays, many things has changed. The internet as the standard medium
for exchanging data has defined TCP/IP as standard transport protocol and
you can reach every computer which is connected to it. At least in theory if

the PCs are not protected by a firewall.



The internet is a collection of networks, which are connected among each
other. It was designed to be failsafe and therefore every single point of fail-
ure must be eliminated. The result of this demand is that there is no single
instance which controlls the streams of data passing from one computer to
another. Instead the data is broken into small pieces and these packets are
routed from one network to another connected network until they reach their
destination. The way through these networks is not constant and can change
due to a high load on single router or on network failures. Thus you can’t
guarantee that your packets will not leave their normal path and then be
read by someone else. The internet is therefore called an ”open network”

and considered to be untrusted by default.

In such an environment nobody would dare to set up a file server and share
the stored data over a protocol like NCPFS, NFS or CIFS (Common Internet
File System)[1], the new name of Microsoft’s SMB protocol. Also it has the
word ”internet” in its name, after a few ”blue screens of death” and cracked
servers, even Microsoft seems to realize that this protocol is rather useless
for usage in the hazardous environment provided by the internet. The rea-
son for this problems are the weak security measures which are implemented
into the existing protocols. None of them provides methods for strong au-
thentication which withstands sophisticated attacks. And due to the export
regulations on cryptography in the United States until a few years ago, no-
body wanted to implement encrypted protocols to protect the transmitted

data from eavesdropship.

1.2 Threats in network environments

Let me describe some common threats you will face while using the internet.

They can be classified into two major categories:

Technical threats One of the most often used techniques to get trans-
mitted data between two computers is sniffing. It is a passive attack and

is therefore on the one hand very easy to do and on the other hand not



detectable neither by the sender nor by the receiver of the message. The
only limitation this attack suffers is that the packets have to pass the net-
work interface of the attacker in order to grab them and record their content.
Otherwise it may be possible to hack one of the routers between the client
and the server to get the packets, but this is much more difficult and implies

exploitable security holes in the router software or misconfiguration of it.
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Figure 1.1: Sniffing

Another common method to steal data is to attack the computer itself.
Due to the complexity of software today, it is common practice that people
discover new security holes every day. This can happen in the underlying
operating system or in a daemon! providing services to users. These flaws
could often be exploited by so called ”buffer overflows”[2], granting some or
all rights the operating system provides to the cracker. Also mistacks made
while designing a communication protocol could be used by an attacker to

get into a system easily.

Furthermore there is a well known procedure called "man in the middle
attack”[3]. The goal is to intercept requests from the client and make an
own request to the server with the credentials (username, password, etc.)
provided by the client. Afterwards the result is passed back to the client
by the attacker. Then, it is easy for the attacker to store all packets which
has been passed between these two computers. If these credentials were sent

unencrypted or are equivalent to clear text ones, the attacker can use them

!The Unix name for a background process which serves requests automatically



for subsequent requests to the server again. This time he may be able to
read information, which wasn’t transmitted by the first request.
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Figure 1.2: Man in the middle attack

At last I just want to mention another attack, whose usage has been
increased since the last two years. The goal of this attack isn’t to be able
to get sensible information, instead it aims at making a service unavailable
and is therefore called ”denial of service (DoS)” or as a special occurrence
”distributed denial of service (DDoS)”[4] attack. They are performed by ex-

ploiting weaknesses in programs or protocols and can turn down a computer.

The list of attacks above doesn’t lodge a claim for completeness. It only
lists a collection of most common attacks performed by malicious users in

the internet and sometimes also in corporate or public LANS.

Social threats For the other sort of threats maybe we are together re-
sponsible because either they are tolerated by us or we (respectively our

politicians) made them by ourselves.

The so called ”Law Enforcement Agencies” which is a common term for
our police, constantly demand more rights to listen on our private conversa-
tions over the internet, radio circuits or other media. Up to now, there is no
real analysis on how successful this eavesdropping has been as a whole, at
least in Germany and other European countries, and if it was justified in all
cases. Furthermore, they are trying to simplify their work by standardizing
interception interfaces in communication devices, as described in the ETSI
dossiers[6]. This let them get information quicker and without participation

of the service providers with less control by others. And don’t forget that any
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additional observation interface in the communication hardware may open

security holes which haven’t been seen yet.

Another threat to our privacy are intelligence agencies, which also intercept
and record communication or at least parts of it. In former times, during the
cold war, these agencies were responsible for supplying information about the
enemy, but since 1990, they lost their primary foe. Since then they have been
searching for new operational areas and one of these new areas is definitely
business espionage[5]. All companies are of course interested in the commu-
nications of their competitors because each piece of additional information
gives them an advantage. Especially the United States seems to be leading
in supplying business information about companies in foreign countries to

their own companies.

1.3 Lack of security features

I hope I convinced you that there is a necessity for security in the internet.
But how can this be achieved? The answer to this question is more complex:
Security is in fact a developing process where both, users and software have
to be involved. Besides the parts which requires user interaction, such as
training the users and sensitize them about the things they should do or not
do to achieve more security, there are two key requirements regarding the

software we will have to focus on: Encryption and authentication.

Unfortunately this features aren’t implemented into current network file sys-
tem protocols or the design of them is insufficient. As I have mentioned
above, the export of strong encryption was prohibited by the US government
until a few years ago. This leads to non-usage of it because the compa-
nies don’t want to lose a piece of their market share abroad. So neither
NFS, NCPFS nor CIFS does anything to protect the content of their data
streams. Moreover encryption is a rather expensive operation, which costs
a lot of CPU time. Thus either you need a machine with more computing

power or specialized chips to achieve the same throughput. Nevertheless
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strong encryption is essential to reach a level of security which is acceptable
for transmitting data over the internet and we have to cope with it.

Authentication instead doesn’t protect your data directly, but it is as neces-
sary as encryption. Its purpose is to prove that you are the one you claim
to be. It isn’t very nice to sent someone your encrypted personal data and
it turns out that the receiver was another person, who stole it. Authenti-
cation can be done by exchanging passwords only known by the server and
the user or in a more complex and secure way by using a public key pro-
cedure like RSA. To make an example, why the authentication have to be
improved to current network file system protocols, we may look at NF'S and
CIFS. NFS provides in its latest version RSA public key authentication, but
only between the server and client machine. It isn’t checked if the user is
trustworthy, instead the server can only be sure that the client machine is
known and has to rely on the user authentication of the client computer.
This especially leads to big problems on operating systems like Windows 9x
or MacOS, which doesn’t provide real user authentication. The other bad
example regarding to authentication is Microsoft’s CIFS, which provides ac-
cess to server resources by password authentication. But due to the fact that
the password digest produced by the hash function is password equivalent|7],

this doesn’t provide any security if somebody used a sniffer to get this digest.
These were just a few things which are subject to make them better. I

hope you understand now, why I strongly disagree if somebody says that the

design of another network file system would be a waste of time.
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Chapter 2
Analysis

After writing a little bit about my motivation, it should be clear to everyone
why I am keen on implementing something new. The basic requirements I
mentioned several times are authentication and encryption, but maybe this

is not enough.

In this chapter I will analyse existing file system protocols and their im-
plementations for weaknesses, which has been surfaced up to now. I will
concentrate my focus on the most commonly used protcols like NF'S, CIFS
and Novells Core Protocol (NCP File System), but also look at a protocol
currently developed by the Carnegie Mellon University named Coda. Sure
there are other protocols aswell, but either they haven’t been deployed widely
and security problems aren’t known in detail, or they are similar to the an-

alyzed protocols.

2.1 Network File System

The Network File System (NFS)[8] protocol, originally designed by Sun Mi-
crosystems in the late 1980’s, is a general purpose filesystem protocol for
Unix environments, but the implementation has been ported to many other

operating systems aswell. The intention was to create a filesystem for LANs

12



controlled by an administrator who has administrative control over all ma-
chines. Therefore, NFS servers trust the clients to work correct. This has

some implications, which will be described later.

First of all a description of the dependencies: In almost all cases the UDP
protocol is used as the underlying transport protocol, but in some imple-
mentations it is possible to use TCP instead. On top of the raw transport
protocol is a layer called Remote Procedure Call (RPC) which implements
the different calls for sending, retrieving and modifying data located on the
server. It is supported by the eXternal Data Representation (XDR), an addi-
tional layer, which evens out the differences between the hardware platforms
related to the byte order and implements some basic data types used by the
RPC layer. If the UDP protocol is used, the RPC code is also responsible
for reimplementing some TCP functionality, like the retransmission of lost
packets. All transmissions are sent unencrypted over the wire. The mount
protocol is separated from the NFS protocol and not handled by the NFS
server. Instead a mount daemon is responsible for accepting mount/unmount
requests from the clients and after verifying the validity of these requests it
returns a NF'S file handle to the client, which grants further access. The ver-
ification of a request is rather simple: the mount daemon checks whether the
requested filesystem is exported by the NFS server and whether the filesystem
is allowed to be exported to the IP address of the client. The NFS protocol
respectively the mount protocol describes the possibility to use public key
mechanism (DES) or Kerberos authentication, but this isn’t implemented
into most NFS servers and is not used in the vast majority of LANs, where
NFS is deployed. By design, both the mount daemon and the NFS server
are dependent on a port mapper, which forwards packets to the ports, where
the mount daemon or the NF'S server are listening and registered by the port

mapper.

There are some aspects of this protocol, which can be seen as design flaws
related to the security aspect: In a LAN environment the usage of the UDP

protocol is acceptable, but for exporting a filesystem over the internet it is

13



not. UDP is a connectionless protocol, where packets can’t be associated to
a transfer between the client and the server besides the ip address. There-
fore, it is easy for an attacker to insert packets into the communication of
the client and the server, and an intermediate firewall is not able to filter
out those malicious packets. For this reason UDP transmissions are blocked
by most firewalls unless they belong to the Domain Name Service (DNS)
protocol.

Since the packets are sent unencrypted between client and server, neither
confidentially nor integrity can be guaranteed, and the authentication is very
weak if DES or Kerberos is not used. In addition, this authentication is al-
ways done only between the client machine and the server, not between the
user and the server. If the NFS server trusts the client machine, then the
users on this client computer have access to the whole exported filesystem.
Their rights are only limited by the client operating system and if the at-
tacker has administrative privileges on the client machine, he is at least able

to read all files and their content not owned by the root account.

\g \@ \P
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NFS messages

Figure 2.1: Sniffing NFS file handles

Furthermore the NFS server can’t distinguish between falsified file handles
and file handles established by the mount daemon. An attacker can get
access to all files which are not owned by root, if he manages to snoop the
network and steal a file handle[9]. Some portmappers can also be convinced
to forward mount requests directly to the NFS server instead of the mount
daemon. Thus the restrictions placed by the mount daemon can be bypassed

by a malicious user. The worst case is the chance for an attacker to take over
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the server by the installation of a .rhosts file if the filesystem is exported
without restrictions and a rhost daemon is running[10]. These scenarios are
not unlikely because a NFS request is a simple network message and can be

generated by a self written client program aswell.

2.2 Common Internet File System

The Common Internet File System (CIFS), formerly known as Service Mes-
sage Buffer (SMB) protocol, is an extended version of Microsofts[11] Lan
Manager protocol. It was used for file transfers between two computers in
DOS in early Windows times. Microsoft extended the protocol by each new
Windows version, but kept the original protocol for compatibility reasons.
It would be a protocol only used by Windows, if not a free implementation
called Samba would exist for all Unix variants.

SMB originally used Microsofts own Netbeui protocol for the message trans-
port, but after it was clear that TCP/IP was winning the competition of the
most widely used transport protocol, Microsoft decided (or was forced by
the market) to switch to the UDP protocol of the TCP/IP protocol suite.
Between the file serving code and the UDP protocol there is an intermedi-
ate layer inserted, called NetBios, which is responsible for the translation of
the data to the form sent over the network. CIFS uses the UDP ports 137,
138 and 139 for its purposes, like file transfer, remote operations and service
announcements. There are eight possibilities how a client can authenticate
itself to the server, from cleartext to challenge response mechanisms with
hashed passwords. Most of them are offered by the servers for compatibility
reasons. The messages sent by the protocol are not encrypted, neither the

authentication nor the transport messages.

The same aspects regarding UDP in the NFS protocol section applies to
the CIFS protocol as well: it is not suitable for the usage over the internet.
Also the complete lack of encryption is a major drawback. It therefore, pro-

vides no confidentiality and no integrity, which means that everybody with

15



access to the packets on their way from the client to the server and vice versa,

can read and modify the content of the packet.

Furthermore the server has to trust the client too much and gives away too
much information. A server has to accept Null sessions, where no user name
and password is provided. Thus a client can at least retrieve a user list and

a list of all shares and printers, which are exported by the server.

Server

N
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Figure 2.2: Hijacking a CIF'S session

In addition, there are three well known attacks against a CIFS server:
SMB Hijacking, Downgrade and Encrypted Handshake Interception[12]. B
using SMB Hijacking, an attacker redirects the traffic of a client machine,
whose user wants to authenticate himself against a server, to the machine of
the attacker. After the user on the client machine has authenticated himself,
the attacker sends a disconnect message to the client. Now he is able to

access all files on this share without knowing any password.
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Another big reason for the weaknesses of the protocol are the old authen-
tication mechanisms offered by all servers for compatibility reasons, which
can be used by the SMB Downgrade attack. If the client suggests a low level
of security, the proposal of the client is used even if the server suggested a
higher level. This makes it possible to downgrade the authentication mech-
anism to cleartext passwords.

Finally, a design flaw in the protocol helps to decrypt the hashed passwords
even if the strongest authentication is used (SMB Encrypted Handshake In-
terception attack). Passwords are converted to upper case, divided into two
halves with seven bytes each (more characters are not used) and padded with
zeros if necessary. These strings are then encrypted with DES by using a key
with 40 bits. This creates recognizable patterns which eases the decryption

by using a brute force attack.

2.3 Netware Core Protocol File System

The Netware Core Protocol File System (NCPFS) is the file and printer shar-
ing protocol used by Novell’s[13] network operating system called Netware.
It is at least used since version 3.0 and is a core part of the Netware operating

system.

In the early 1990s NCPF'S used Novell’s own Internet Packet eXchange (IPX)
protocol as underlying transport protocol, but since version 4.11 TCP/IP is
also supported. Novell switched to TCP/IP completely in their latest version
(version 6.0) and dropped support for IPX. Now UDP is the protocol of choice
for transmitting messages from the clients to the server and vice versa. The
Remote Procedure Calls (RPC), which encode the network message, are di-
rectly bound to the internal functions of the operating system kernel and not
only used for file and printer sharing. A lot of RPC interfaces exist for bind-
ings to the Netware Directory Service (NDS) and other functionality besides
file access which are provided by the kernel. The number of RPC interfaces

provided by the Netware kernel may have reached several hundred up to now.
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There is little known about security holes and vulnerabilities of the protocol,
not because the design and implementation is superior, but simply because
Novell doesn’t talk about security related things in the public. If security
holes are found they are discussed in forums of Novell related companies,
which develop software for Netware or maintain large amounts of Netware
servers of their customers. Available updates for Novell products don’t con-
tain a changelog, which documents the fixed security holes, therefore it is
best to keep up to date even if the Netware server doesn’t seem to be af-

fected by a bug fixed by a new patch.

Because not much information exists about the security issues of NCPFS,
which is publically available, I used a document found on a Russian site[14]
which describes a lot of security holes and gives advice how to hack the
Netware operating system. There are a lot of hacks available, which uses
vulnerabilities in the NCP protocol in combination with IPX, but most of
them are rendered useless after the switch to UDP. For the usage over the
internet the same disadvantages apply to NCPFS as described in the NFS
section. All transfers between client and server are not encrypted, so the
passed messages can be easily recorded and analyzed. In one of the latest
versions of the NCP protocol Novell implemented the possibility to apply a
signature to each packet, but it seems that is doesn’t work correctly. The
transmitted passwords are hashed by a one way hash function, but these hash
digests are equivalent to clear text password. Furthermore the hijacking of
sessions is possible if the attacker manages to mimic an authenticated client

and put client and server out of sync.

The author of the original document[14], which contains the possible hacks
mentioned, writes that there seems to be no clear design of the NCP pro-
tocol and it has instead evolved over the years. Somebody also called it ”a
rotten protocol”, which is always adapted to the next version of the Netware

operating system and up to now never rewritten from scratch.
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2.4 Coda

Coda is a rather new file sharing protocol designed by the Carnegie Mellon
University[15] and still under development. The major design goals were the
possibility to perform operations on the filesystem while being disconnected
and automatic reintegration of all changes after the reconnect. It isn’t up to

now widely used, but seems to be promising.

The transport protocol used by Coda is also UDP like all other analyzed
protocols. Above there is a layer which consists of RPC calls and encodes the
network messages between the client and the server. These calls only contain
messages for filesystem operations and do not include additional functional-
ity like the NCP protocol. The Coda client also maintains big caches of file
meta data and file contents for the case of a disconnect. After the connection
is reestablished the client automatically replicates all changes to the server
if no conflicts arise. The privileges are not managed like by traditional Unix
implementations, by using user and group IDs, instead access control lists
(ACLs) are implemented.

As the filesystem is rather new, there are no published documents about
the weaknesses of the protocol already available. Thus I would like to men-
tion a few basic thoughts: The usage of UDP isn’t very useful for the reliable
transport of RPC messages over the internet. In a LAN environment, it is
acceptable and I mentioned this already in the section about the other pro-
tocols. The source code of the RPC layer is rather voluminous, so there may
be some security holes found because of the complexity of the RPC imple-
mentation. Furthermore there is no possibility to check the integrity of a
packet up to now and there is no encryption available by default. The Coda
framework provides the possibility to integrate encryption into the protocol,
but there seems to be nothing besides a simple XOR operation with a short
key available. Maybe there will be a strong encryption algorithm available

in the future.
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Chapter 3
Requirements

After knowing a little bit about the strengths and weaknesses of the currently
used network filesystem protocols, it is about time to define the requirements
for a more secure internet filesystem protocol and its software components.
This will be done by keeping an eye on the facts we found in the analysis of
NFS, CIFS, NCPFS and Coda to avoid their weaknesses and leverage their

strengths where possible.

While writing down the requirements, we have to carefully look at the in-

tended usage of the implementation in the future:

e The main usage won’t be to get access to file servers in a LAN and
transfer huge files to the client. Instead administrators should be able to
mount the filesystem of a server or client on his own computer and to do
administrating tasks on these machines for example. This may include
changing configuration files, copying new packages to the machines and
then install them remotely by using a normal SSH login. Furthermore
internet service providers (ISPs) should be able to grant customers

convenient access to their remote files in a secure fashion.

e [t is also not intended as a general purpose filesystem like NF'S, which
can provide access to whole filesystem trees on startup to all users on
a client. The problem of NFS is that it has to trust the clients too

20



much, which is misplaced in an hostile environment like the internet.
Therefore the intended usage of the Secure Internet File System (SIFS)
may be best described by making it possible to access files transparently

across the internet in a secure way.

e Also it is optimized for a maximum of security not speed and empha-

sizes a strong client/server model to achive this level of security.

3.1 Transport layer

In this section, I will decribe the requirements for the transport layer of the
SFIS protocol built on top of TCP/IP. For further reference about TCP/IP,
there is a good book from Kevin Washburn[16] available, which describes the

protocol suite in detail.

The transport layer is responsible for a reliable communication between client
and server. So because IP is the only protocol of choice for communication
over the internet, TCP has to be used. It has some advantages over the UDP
protocol, which only forwards all received data packets to the application.
TCP is a connection oriented protocol which requires to establish a connec-
tion before any data can be sent and a termination of this connection if all
data transfers are completed. The reliability of TCP over UDP is achieved
by adding error recognition and error correction to the protocol and the re-
transmission of packets which are lost on the way between client and server.
The TCP protocol header includes fields for flow control to manage the data
stream as well as sequence numbers to reorder packets if necessary. These
sequence numbers are also used to discard packets which are received twice
and to request lost packets again. Moreover the TCP/IP stack implemented
into the operating systems sends an acknowledgement to the communication
partner if a packet was received successfully. Because UDP doesn’t contain
these features, it is possible for an attacker to inject packets into the commu-
nication and only the application can decide whether the packet is correct or

not. This caused many network administrators to configure their firewalls to
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reject all UDP packets which are not absolutely necessary.

Also the communication between client and server must use a well defined
port on the server side. The need to dispatch client connections to different
ports if UDP is used is a real nightmare at the security point of view of each
network administrator. They have to open a complete range of ports that
will be used by the NFS server to communicate with several clients. Also
because a firewall can’t decide whether the packet comes from a valid and
authenticated source or an attacker probing for exploitable security holes
without any authentication, the administrator is completely at the mercy of

the NFS server implementation.

The ftp protocol has shown the same problem as NFS in the past regarding
the use of several ports at once. Ftp uses one port for commands and one for
data transmissions. Passive ftp connects to a server and the server replies by
announcing a new port where the data connection will be accepted. Active
ftp, which is even worse, doesn’t repliy with a new port. Instead it uses
the port announcement of the client and directly connects to the client. The
definition of client and server is therefore reversed in this case and this makes
it hard for a firewall to do a good job. Especially active ftp is prohibited by
most firewalls completely. To avoid this, only one port should be used by the
SIF'S server and this port must be used for command and data transfers at

the same time. Also the definition of client and server must not be reversed.

All filesystems which use remote procedure calls and especially NFS and
NCPFS had shown vulnerabilities over the time. RPC protocols, which have
to encode the type, the length and the data of each variable, are more complex
than a well defined protocol like IP. Therefore, it is easier to make mistakes
when parsing these protocols, which may result in exploitable security holes.
NCPFS had a bad history regarding this issue. Furthermore RPC protocols
require more memory and CPU time for parsing because of their flexibility,
which results in the addressed complexity. Also well defined protocols with

fields at fixed positions can be optimized to be aligned to 32 or 64 bit borders
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more easily than RPC protocols, which further increases speed on modern

processors.

In order to ease implementation and therefore to avoid security holes the
protocol should only consist of a simple request/reply scheme. This means
that the client sends a request to the server and the server replies only once
to the client. The server will never send some data to the client if there was

no former request.

The most important thing regarding the protocol is encryption. Without
encryption the necessary confidentiality can’t be provided. Everybody who
has access to the wire or a router, where the data packets are passed through,
can read the transmitted messages. The choice of an encryption algorithm
depends on two things: There must not be some known attacks which re-
duce the time to break a used key, and the key must be long enough to
withstand a brute force attack. Today algorithms which use a key length
of 56 bits are known to be breakable with enough computing power within
weeks or months[17]. Thus an algorithm with at least 128 bits key length
must be chosen. Recently the American National Institute of Standards
and Technology[18] (NIST) finished a competition for a new encryption al-
gorithm. The winner was Rjindael, now Advanced Encryption Standard
(AES), which should be used for encrypting the communication between the
client and the server. It has proven itself to be resistant to cryptographic
attacks and will now be standard for years in many products which use cryp-
tographic algorithms. Furthermore, it uses at least a 128 bit key and there

are fast implementations available.

3.2 Server

The server is the most relevant component in a client/server architecture.
It is responsible for processing requests from clients and returns a proper
response to them. But it is also the component which is exposed to the

activities of attackers and therefore a couple of security measures must be

23



considered.
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Figure 3.1: man in the middle attack

To avoid "man in the middle attacks” - one of the possible threats de-
scribed in the chapter about my motivation - the client needs a validation
that the server is the one it claimed to be. Without this validation, an
attacker can intercept the clients credentials, connect to the server by us-
ing the credentials to authenticate himself and forward the replies of the
server back to the client. Encryption doesn’t matter in this case, because
the client connection ends at the computer of the attacker while the attacker
is using his own encrypted connection to the server. The attacker acts in
this scenario as a proxy between client and server without knowledge of the
client. The usage of certificates signed by a trusted authority is the most
commonly used technique to avoid "man in the middle attacks” today. The
server sends some informations to the client which contains the address of
the server and some informations about the organization running it. These
informations are cryptographically signed by the private key of a third party
also trusted by the client. The client knows the public key of the third party
and checks, whether the signature of this document is valid. If so, the server
can be trusted. Another possibility to avoid such an attack is to exchange the
certificate, which is now signed by the organization itself by using a secure
transfer method. Both methods are acceptable, but at least one should be

implemented to secure the authentication.

If the authentication was successful and the user is able to access files, it

must be ensured that the user can only access his files. In Unix environ-
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ments access to a file is granted by the file permissions associated to every
file and directory. Implementations like the NFS server don’t care about
these file permissions, because the service runs with root privileges and can
therefore access the content of the whole hard disk. If an attacker manages
to convince the NFS server to give him access to the exported directories,
he is able to read all files located there. Thus the better solution is to drop
root privileges after the authentication of the user and execute all further
commands under the privileges of the user. Then the only files which can be
accessed by the user are those which are owned by him or where other users
or the administrator granted him additional rights to their files. Furthermore
even if the SIF'S server module has an exploitable security hole, the attacker

can’t extend his rights above those of the user.

exported
direcory
tree

Figure 3.2: Relative path vulnerability

By relying on the file permissions heavily, the administrator of the server
is responsible to restrict access as much as possible. Additionally the imple-
mentation of the server may contain measures to further restrict access to the
files. For example the file permissions of newly created files may be modified
to only grant read and write access to the user and not to his group or even
to everyone. Furthermore the administrator may be put in a position where
he can restrict access only to certain directories on the server in a global
mannor like it is possible by NFS or on a per user basis. In both cases the

implementation has to care about paths, which contain relative path compo-
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nents, e.g. ”/../”. If this isn’t handled correctly, files in the parent directory
above the mount point may be accessible and thus the access rules added by

the administrator would be rendered useless.

At last the server must not trust inputs sent by a client, neither on the
protocol layer nor the extracted strings or numbers. All input should be

validated by the server before it is used to avoid exploitable security holes.

3.3 Client

The client is the interface to the user and this makes it to a target of unin-
tended faulty usage or intended attacks. Thus the client has to be a robust
piece of software handling all error cases correctly and provide nevertheless
the flexibility and security needed.

Like the server, the client must be able to authenticate the user by pro-
viding a password, a public key or a certificate to the server. The password
exchange is a widely accepted standard mechanism for authentication. The
client respectively user, sends a secret string to the communication partner,
which is only known by him and the server. This string is then compared to
the string in the password database of the other machine and if it matches,
the access will be granted. Instead of the clear text string it is also possible
to send a hash digest computed from the password and a string received by
the server. But this may only be allowed after the communication is already
encrypted and the server authenticated itself to the client e.g. by providing a
certificate. The public key and certificate method are similar to each other.
The difference between them is the kind of validating the identity of the other
side. If public keys are used, the server must have already received the public
key through a secure channel whereas the certificate must be signed by an
authority which is trusted by both parties. The server checks the signature
of this third party sent with the certificate by using their public key and
grants access if this signature is valid. The authentication with public keys

or certificates doesn’t require any user interaction and can therefore be used
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to authenticate both sides automatically. This is a lot more convenient than
the password method and only a little bit less secure. The user must only

protect his private key well.

After the authentication is done, the content of the requested filesystem can
be exported. Because the user should be able to see the files and directories,
he must be able to mount the remote filesystem to a local directory of his
choice which is owned by him. This is the task of the client operating system.
The contents of this filesystem should be readable or writeable by other users
on the client computer if this is desired, but there must also be a possibility
to prevent this. A proposed solution for this problem is to map the user and
group ID numbers of the files exported by the file system to the uid and gid
number of the authenticated user and his primary group. I would like to
call this a semantical mapping, because the group of users on the server may
not necessarily be the same as on the client machine. Thus it is the job of
the kernel to replace the numbers sent by the server with that of the user
and his primary group. This enables the user to grant or deny access in a

multiuser-capable environment on his specific demands.

Another significant point is the error recovery between the client and the
server. In case of a serious error, the communication partners must be able
to fall back into a defined state. Such an error condition may be a fatal
protocol error. As a result of that, all subsequent packet transmissions may
be corrupt from the other side’s view, because the begin and the end of a
packet aren’t known any more. Then both client and server must be able
to terminate the connection, but only the client is allowed to reestablish the

connection because of the strict client/server paradigm.

The client is responsible for checking the incoming packets for validity in
the same mannor as the server. It must not trust the input without checking
it. Furthermore the client is also the interface to the user and must thereby
carefully examine this input as well to avoid security problems often surfaced

in the past. Especially strings must be handled with care. If an attacker is
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Figure 3.3: Overwrite stack by buffer overflows

able to feed the client with long strings, which overwrite the content behind
the input buffer until the return pointer of the current function placed in the
stack is reached, he can execute arbitrary code. Therefore strings should be

cut in general if the input buffer is out of space.
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Chapter 4
Software basis

The SIFS protocol and its implementation as a filesystem driver and a server
module are only components, which are useless without a framework they
can be built upon. It is necessary to carefully choose the frameworks to ease

implementing the components.

4.1 SSH framework

After a little bit of investigation it was clear that an existing framework for

authentication and encryption should be used to minimize the effort.

There are two alternatives, which could be used for supplying the under-
lying services: SSL and SSH. SSL, the Secure Socket Layer is a protocol
originally designed by Netcape for the secure retrieval of documents stored
on a web server. SSH on the other side was implemented by Tatu Ylonen[19]
for a secure replacement of rsh, rcp and telnet, programs which allow remote
login and execution of programs on other computers. Both are wide-spread,
but SSL more than SSH. The reason, why SSH was chosen over SSL is, be-
cause SSH provides a feature rich framework, which eases implementation of
new services a lot. Despite that of SSL, SSH and the free OpenSSH imple-
mentation already provides a server implementation where new functionality

can be added by loading additional modules. Because SSL is only a protocol
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description, there is no server available on which it can be built upon. Fur-
thermore SSH provides means to distribute the public keys from the server
to the clients on its own, at least in trusted environments. And finally, it

also fulfills the other requirements listed in the last chapter.

filesystem sifs—client |2k Sdigl openssH OpenSsH
driver process - client process = aver
pair stdout

Figure 4.1: Sifsd-SSH client relationship

For transporting the requests from the client computer to server the exist-
ing OpenSSH[20] client could be used. Therefore, it is not necessary to reim-
plement the SSH protocol, saving a lot of time. The OpenSSH client must
be executed by program, which has already accepted the connection from
the kernel filesystem driver, and must include a set of parameters. Among
these parameters have to be the ”-s sifs” option to tell the server to execute a
server module named sifs after the authentication succeeded. The OpenSSH
client is normally waiting for user input on stdin and is writing all received
messages to stdout. Thus it is possible to connect a socket pair to stdin
and stdout and redirect these socket pairs to the parent process. The parent
is then ready for reading requests from the kernel connection and inserting
them into the socket pair connected to stdin of the OpenSSH process respec-

tively forwarding replies from the server to the kernel connection.

The server module is a standalone program, which is executed after the
OpenSSH server has authenticated the user and forked a child process. Like
the user space process on the client computer and the OpenSSH client, these
processes are connected by socket pairs for input, output and error messages
and the socket end points on the side of the sifs module are mapped to stdin,
stdout and stderr. All messages, which arrive over the authenticated and
encrypted channel after the connection from the client to the server has been
established, are forwarded to the sifs module. The output is sent over the

socket connection to the OpenSSH server, which forwards it the other way
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Figure 4.2: SSH server parent-child relationship

round to the client. Only the output of stderr, which consists of textual error

messages, is written to a log file on the server and not sent to the client.

4.2 Linux

It became evident that the Linux operating system will be one of the best al-
ternatives for implementing a prototype of the filesystem driver. It provides
a Virtual Filesystem Switch (VFS), which is a layer between the filesystem
drivers and the file related system calls implemented by the operating sys-
tem, with a clear design. Currently there are 42 different filesystem drivers
included into the official kernel tree and probably more are maintained ex-
ternally. The number suggests a flexible VF'S implementation which matches
the need of most filesystems. Also everybody can look at the source code
and can learn, how things are done internally to understand the interaction
between driver and system call interface. This helps a lot to develop an effi-
cient implementation of a new filesystem prototype. The only disadvantage
that comes along with the Linux kernel is the lack of a good and up to date
architecture description. This is mainly due to the tendency of kernel de-
velopers to document the source code and their aversion to write separate

documentation.
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Furthermore Linux is relatively wide-spread, at least as server operating sys-
tem. Especially the target audience (server administrators in companies and
internet service providers) often use it as web, file or mail server. They like
the stability and reliability of the Linux kernel and the provided security.
Therefore it will be the ideal implementation platform for the Secure Inter-

net File System filesystem driver prototype.

A kernel filesystem driver has to be written as a module for the VFS layer.
The VFS layer can be seen as a big dispatcher, handling requests from the
system call interface down to the appropriate filesystem driver. Its main pur-
pose is to hide the different filesystem types and provide a single interface
to all application programs by abstracting from the on-disk data structures
for files or directories to a general one, the inodes. The definition ”inode” is
used as a generic term for all possible file types, like regular file, directories

or special files and the VFS layer is responsible for their administration.

Accessing a file (represented in form of an inode by the VFS) stored on
a filesystem from an application requires at first the mounting of the filesys-
tem into a directory below the root directory. Only then the content of the
filesystem is visible to user space applications. Therefore, the VFS creates
a filesystem instance, which is similar to the execution of a program file re-
sulting in a running process instance. With the parameters provided by the
mount program through the mount system call, the VF'S layer will use the
right driver for accessing the filesystem and will show the content under the
given directory. It is not important where the filesystem is located, either
on a partition on the local disk or on a remote server. This implementation
details are hidden by the driver implementation and the VFS layer only act
as a mediator, providing a well defined interface to the filesystem driver. A
driver can be used several times to access files at different locations with
filesystems of the same type and therefore a superblock structure is created

by the VFS for each mounted partition (or server directory).
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To be able to access the contents of the filesystem, a filesystem driver must
provide implementations to the interface stubs of the VFS layer. For exam-
ple, there are interfaces for accessing files or directories or modifying their
contents. Some functionality like the lseek operation (move a file pointer)
is the same in all filesystems and by this reason the implementation is done
by the VFS layer to reduce the amount of code necessary. Nevertheless this
implementation can be overwritten by the filesystem driver if necessary. In-
terfaces, where no default implementation exists by the VF'S layer or where
the VFS layer provides only a part of it, must by implemented by the driver.

For a complete (network) filesystem implementation there are a number of
such interfaces which must be filled with code by the specific filesystem driver.
The tables below contain the names of these interfaces in Linux including
a short description, divided into the minimal interface set for a read-only

filesystem driver and the interfaces for modifying files or directories.

VEFES interface | Description

read_super | Mount the filesystem

put_super Unmount the filesystem
statfs Provide information about the filesystem
lookup Lookup information about an inode

revalidate Recheck the validity of inode attributes

permission | Check the permissions of an application

readlink Provide the link content
follow link | Map the link to the real inode
getattr Provide the inode attributes
readdir Provide the names of the inodes in a directory
open Open a file
release Close a file

readpage Read a chunk of the file content
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VES interface

Description

create Create a new regular file

mknod Create a special file

mkdir Create a new directory

rmdir Remove a directory

link Create a hard link to a file or directory

unlink Delete a file
symlink Create a symbolic link to a file or directory
setattr Change the inode attributes

rename Rename a file or directory

prepare_write

commit_write
fsync
lock

Map user data to write buffer
Write data to storage medium
Synchronize buffer with disk
Lock a file or a part of a file

Like mentioned before, the VFS layer implements functionality which is
common to all filesystems and it also contains some performance enhancing
features. One of them is the dentry cache, a cache which contains the names
of files or directories where a lookup of the name and the corresponding at-
tributes were done before. The entries of this dentry cache are necessary for
some functions implementing the VF'S interfaces to rebuild the path to a file,
which should be accessed on the server. Moreover it not only caches existing
names, but also the failed lookups as long as enough memory is available.
The failed lookups are stored as ”"negative dentries” with no pointer to an

inode structure set.

Everyone can convince himself of the performance enhancement by the den-
try cache: the execution of the ”1s” command on a directory will be slow the
first time. A second and subsequent executions of ”1s” on the same directory
will return the content within milliseconds, if the revalidation of the directory
entries is additionally done in the filesystem driver cache. The effect is rather

obvious on network filesystems, where lookup operations are expensive.
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For further information about the VFS layer in general, the book[21] from
Goodheart and Cox about the internals of the Unix System V is a good
reference. For a concrete implementation example, the source code of the
Linux Virtual Filesystem Switch is contained in the source distribution of

the Linux kernel available at kernel.org[22].
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Chapter 5
Design

This chapter contains the in-depth description of the architecture, which
consists of three parts, and the protocols relevant to the Secure Internet File
System. The design is based on the requirements described in the third chap-
ter while trying to avoid the weaknesses of the analyzed network filesystem

protocols in the second chapter.

5.1 System design

5.1.1 Architecture

The starting point for the design was the requirement of a pure client/server
architecture, which implies to have different pieces of software on the client

and the server machine.

The server must be able to service requests from several clients without
interfering with each other. A very secure and commonly used technique
by server implementations of all kind in a Unix environment is to spawn a
child process for each established connection to a client. The main server
process listens to a defined port and accepts new connections from clients
executed on machines and connected to the server. Then the server process
creates a copy of itself for each connection and listens again to the server

port. Meanwhile the child process is able to communicate with the client by
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using the previously accepted connection of the server, which was handed
over to the child. This child is now responsible for servicing requests for this
particular client. If this connection is terminated either by the client or by
the child after an error occurred, then the job of the child is done and it
finally terminates itself. For a new connection from this client, the server

creates a new child not related to the old one.

This approach has some nice advantages over the usage of threads or non-
blocking I/O from the security point of view. Each child is a complete process
with its own address space. Therefore nothing is shared with other processes,
neither with the main server process nor one of the other children. So even
if a malicious client is able to force the child to do something which it wasn’t
intended to do, the attacker can not affect any other process. Furthermore all
children can drop all unnecessary privileges inherited from the main server
process. This is especially useful if the server listens on a reserved port be-
low 1024, because the process needs root privileges to do this. Without these
privileges the potential harm an attacker could cause is drastically reduced.
On the other side, forking a child is a very time consuming operation related
to creating a new thread or waiting for data sent by one of the clients. Despite
all optimizations done by the operating system, it may take five to ten times
longer on startup before the first request can be serviced. A thread or non-

blocking I/O design may be preferred clearly if speed is a major requirement.

The client is normally a user space program started by the user on the client
machine, but not in this case. The goal is to make remote files and directo-
ries accessible on the client machine without the need to change any existing
program. Because applications use the kernel interface to access all files,
the client for the SIFS server has to be a kernel module. This module must
be implemented as a filesystem driver translating requests from user space
programs into requests for the SIF'S server, which are then sent over the net-
work. The reply from the server must also be translated back to a format
the user space process is waiting for. In all current Unix implementations a

layer called Virtual Filesystem Switch (VFS) is available for a part of this
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task. It is responsible for providing a consistent view to all filesystem drivers
included into the kernel and often does additional tasks like caching file and

directory names.

The first thought may be to implement both, the translation engine and
the security mechanisms (authentication and encryption) into the filesystem
driverm but this is difficult to do because of the limited functionality provided
by operating system kernels. Besides the functionality implemented directly
into the kernel and also provided to user space programs, there are only a
few additional functions used by other parts of the kernel. In particular func-
tions supporting encryption and authentication are not among them, because
they are undesired due to the export regulations of the United States. In ad-
dition it isn’t possible to access shared libraries in user space, which have
implemented such mechanisms. Therefore, the only possibilities are either
to reimplement such a library in the kernel or the do all authentication and

encryption in a user space program.

Application _

A Process A Sfsd Userspace | 4 SIFS Server i
VFS VFS
Networ k Kernelspace Networ k
y SIFS ﬂ Layer ! ﬂ Layer FS y
Driver I~ - g Driver
Client Server

Figure 5.1: SIFS communication model

Due to the complexity of such a reimplementation and the lack of time,
the possibility to reuse existing code in user space seemed appealing. Also
Jeff King[23] suggested the usage of a daemon running on the client machine
and listening to the loopback network device for requests sent by the filesys-
tem driver to the server. This daemon, which will be called ”sifsd” or client

daemon, is responsible for establishing an authenticated and encrypted con-
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nection to the server and sends the packets back and forth between kernel
and server. Besides the advantage of reusing code, the filesystem driver is

now more likely to be accepted in the official kernel distributions.

The disadvantages are a slight loss of security on the client machine and
a performance decrease. Because all transfers between the kernel and the
sifsd are not encrypted, the super user is able to attach a packet sniffer to
the loopback network device and to read the information passed to one or
the other. But due to the privileges of the super user, he may have simpler
methods reading this information. All other users are unable to access it
because they are not allowed to sniff the loopback network device, and the
packets won’t leave the computer on this way. It isn’t known yet how big
the impact on the performance is, because of the sifsd. In the end the data
is additionally sent and received twice, once from the kernel to the sifsd and
another time from the sifsd back to the kernel, before it is finally sent to the

server.

5.1.2 Description

Now, after the basic architecture is clear, a more detailed description of the
single steps done by the client, sifsd and server follows. On the basis of ac-
tivity diagrams the different types of actions of these components as well as

the possible error situations will be shown.

The sifsd, acting as proxy between the kernel code and the server, is
responsible for forwarding all high level requests back and forth. Before it
can perform this task it must establish a connection to the server which is
encrypted and authenticated (see figure 5.2). For authentication there are at
least two methods which have to be supported: Password and public keys.
For password authentication, which is probably used in most cases, a user-
name and password must be sent to the server to prove the identity of the
user. These credentials are requested by the client program the user exe-

cutes and therefore known by the sifsd. In fact it won’t be necessary to hand
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Figure 5.2: Connect activity diagram
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them down to the kernel filesystem driver, because the sifsd is already able
to establish a connection to the server, but the sifsd itself has to wait for
a connection from the filesystem driver to initiate the connect procedure to
the server. In order to prevent an attacker from connecting to the sifsd and
sending requests to the server, the credentials are transmitted by the connect
request from the kernel to the sifsd. These credentials are then compared to
the original ones and only if they match, the connect sequence to the server
is initiated. The server also has to check the credentials against its database
and if they are valid, the server spawns a child of itself for the new connec-
tion. At the same time this child drops its privileges inherited by the server
process to limit the access of the user. In both cases - the credentials are valid
or not - the server sends a reply to the sifsd. This reply is then forwarded to

the kernel and if it was a negative one (an error message) the sifsd terminates.

There are two possibilities for the kernel filesystem driver to disconnect
(figure 5.3): If a user wants to unmount the filesystem and remove it from
the client filesystem tree, and if the kernel detects a fatal error regarding
the protocol. A fatal protocol error may be if the connection screwed up
and the received replies from the server can neither be dedicated to former
requests nor the payload makes any sense any more. In the error case, the
kernel terminates the connection and the sifsd does the same to the server,
but the sifsd must remain active and has to wait for a new connection from
the kernel. In the other case, when the user triggers a normal shutdown, the
sifsd has to terminate the connections as well and must then terminate itself.
To differentiate both cases, the kernel filesystem driver will send a disconnect
message to the sifsd if it should cleanup and exit, respectively terminating
the connection to the sifsd. Without this disconnect message the kernel sig-

nalizes that a new connection will be opened soon.

A reconnect in case (figure 5.4) of an error is quite simple. It is only a
sequence of a disconnect/wait operation, which affects the connection to the
sifsd, followed by a new connect to the sifsd. After the sifsd knows that the

channel to the kernel filesystem driver was closed, it closes the connection to
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the SSH server and waits for the new connect by the kernel. The credentials,
which are sent by the kernel, must be validated again before a new connec-

tion to the server can be established.

After the explanation of the basic operations, only the steps involved in
mount, unmount and data transfer operations are left. They can also be best

explained by activity diagramms.

The mount request (figure 5.5) to attach a remote filesystem to the filesys-
tem tree is triggered by the user. Therefore he has to execute the sifs-client
program, which includes the sifsd server, and the mount command. The sifsd
listens to a given port on the local loopback device while the mount com-
mand supplies the credentials, the IP address and the port where the sifsd is
listening and the local and remote directories, to the kernel. The connect op-
eration followed by the mount request of the SIFS message protocol decides
about the success or failure of the mount process. The result is handed to
the mount process in userspace, which reports a successful completion or the
error message to the user. On success the sifsd remains active and forwards
the requests and replies.

An unmount request (figure 5.6), which removes the remote filesystem
from the client filesystem tree, can also only be triggered by the user. For
this kind of action there is also no special tool is provided because it can be
handled by the standard unmount program. Umount does a few checks to
the supplied parameters before the kernel is requested to remove the given
directory tree. This can only be done if none of the files or directories are
already in use by another program. If there are open files or directories the
operation fails, the connection remains active and an error message is re-
turned to the umount process. Otherwise an unmount request is send to the
server, which signalizes to clean up and terminate the server process. Fur-
thermore the connection to the sifsd will be terminated with a disconnect

message and the successful completion reported to the umount program.
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The last and most often used operation handled by the sifsd is the transfer
of requests and replies between the kernel filesystem driver and the server (see
figure 5.7). The requests are built by the kernel filesystem driver and are sent
to the waiting sifsd. The sifsd forwards it over the established connection to
the server, which tries to process the requested operation and builds a reply
packet. This reply is then sent back to the sifsd, which is responsible for
relaying it to the kernel. The filesystem driver will parse the reply and make
the result available to the waiting user space program. On this way there are
numerous possibilities for errors, which may occur. If the kernel can’t send
a request to the the sifsd, it always tries to do a reconnect, and the kernel
will report an error to the user space programs that the data currently isn’t
available. On the other side, if the server closes the connection because of
an unexpected error, the sifsd also terminates the connection to the kernel
and doesn’t try to reconnect itself. The sifsd will stay alive in both cases,

the termination of the kernel or the server connection.

5.1.3 Problems

The proposed solution described above poses some problems which are also
known by other network filesystems. Mainly there are at least three different

kinds of problems, file locking, file permissions and the time difference.

The file locking problem arises in scenarios like this: A client program re-
quests a lock on a file stored on the server. The connection is established
and the lock is granted by the server. If a fatal error occurs and the connec-
tion must be terminated and reestablished, then the server doesn’t remember
the locks granted to the client any more. Meanwhile another process on the
server or another client may have requested a lock on the same file. It is
granted, because the server process servicing requests for the first client has
exited itself after the connection was shut down. The application on the
first client is sure it holds the lock, but in reality the second client got the
lock before the first one reestablished the connection. Network filesystem

protocols like NFS doesn’t face this problem to this extent because of the
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connectionless nature of UDP. Furthermore NFS uses a lock daemon for all
locking requests, which is separate from the daemon servicing file requests.
Admittedly the lock daemon must have root privileges to handle requests

from all users, which makes it to another potential target for remote attacks.

A solution compatible to the requirements would be a separate lock pro-
cess like the one NFS has, but one spawned by each server child process.
The child process is connected to the corresponding lock process by named
pipes for example and has the same privileges like the child process. As
both processes have only the privileges of the authenticated user, they can
only access the files where access rights are granted to them. This limits
the potential harm they can do, if one or both of them are exploited after
a successful attack. The main purpose of the separate lock process is that
it remains alive for some time in case of an unclean shutdown. If the con-
nection to the client is closed before an unmount is done, the server child
process terminates while the lock process waits for some time. If a reconnect
from the same client occurs, the new child process of the server daemon looks
for an already existing lock process. If the lock process still exists and has
saved the states of all active locks, the new child reestablishes the connection
through the named pipe and can proceed servicing request from the client.
The locking state on the client became not invalid in the meantime. The rea-
son why the lock process terminates after some time if no reconnect occurs
is that an attacker should not be able to exhaust the resources of the server
by terminating connections and not doing a reconnect. This would lead to
many lock processes that pollutes the process space on the server. There is
no need for a description of the protocol between the server child process and
the locking process, because it is only an internal interface not seen by the
client. Both processes are part of the server software and each implementor

is free to use his own solution.

Another issue is the problem regarding the file permissions on the client and
the server. It can not be presumed that the user on both systems has the same

user and group ID. Therefore there must be some kind of translation between
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client and server to ensure the right mapping of the server user/group ID to
the client user/group ID. Otherwise, if only the raw numbers are displayed on
the client, there will probably be some clashes with existing users or a huge
amount of unassigned IDs. The mapping of user and group IDs can be done
on the client to relieve the server without weakening security. It prevents
application processes on the client to access files on which they should have
no permissions, but it has to be done in the kernel by the filesystem driver.
There is no alternative beside trusting the driver. If an attacker manages to
insert a modified driver into the kernel, he can change the mapping and the
displayed file permissions. Then he might be able to access all files on the
server on which the user who mounted the filesystem also has access rights,
but for this attack root privileges are required on the client machine and it is
impossible to build a secure way for file access through a mounted filesystem
if the user can not trust his own computer. If he can trust the client machine,
then it is possible to limit the access only to the user by clearing the permis-
sions of the group and the other users in the parent directory. This prevents

them from even seeing the file and directory names of the mounted filesystem.

The server should export the files with the original file permissions to al-
low the user to give other users on his computer access to the files as well.
The only problem is the correct mapping of the IDs. The solution is a direct
mapping of the user ID on the server to the user ID on the client for all files,
where the user is the owner of these files. Futhermore, the group ID should
be mapped from the group ID of the user on the server to the group ID of the
user on the client. I would like to call this a ”semantical mapping”, because
the users who belongs to the group on the client are probably not the same as
the users who are members of the group on the server. This kind of mapping
should be done because there should be a way to enable the communication
between the users and not to eliminate it in general. On the other side, if a
file isn’t owned by the user who authenticated himself on the server, its user
and group ID should be mapped to root. This mapping is probably next to
the original situation regarding the privileges. There is only one situation,

where the user can’t access a file despite the fact that in reality the server
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would grant access. If the authenticated user belongs to the group attached
to the file, but the group isn’t his primary group, then he is unable to access
the file. This is not nice, but I think it is not too bad. In all cases, the file
permissions (read/write/execute) displayed on the client must be the same

as this one on the server.

The hardest problem is to find a good solution for the time difference be-
tween the client and the server, because programs like "make” needs the
modification time of a file to work correctly. Even if the hardware clocks
in both computers were once synchronized, they tend to differ after some
amount of time, if they are not frequently adjusted. This can only be done
in a reliable way by an external radio signal. It is very unrealistic to demand
that everybody who is using the SIF'S must have a correct system time. The
time can also be distributed over the Network Time Protocol (NTP), but this
isn’t a solution, which is 100% secure, because the packets can be forged on
their way to the client. From this point of view the solution may be to add
or substract the time difference on the client. It turned out that this is also
a difficult task, because the time difference must be measured at least once
after the connection is established. This would require a separate protocol,
which would complicate the design a lot and would raise further problems.
One of these problems is to measure the transit time between the client and
the server. Another problem would be how attacks should be detected and
handled, if an attacker deferes the arrival of the packets responsible for time

measurement.

There is no known secure solution which is applicable in this case. Therefore,
it may be for the best not to modify the access, modification or creation time,
which are sent by the server. The client may change the time values of the
files on the server, but then it has to use its own system time. At least this

doesn’t make the situation worse.
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5.2 SIFS message protocol

In order to exchange data between two computer or only two processes we
need a description how this data is transported. Otherwise no one would
understand, what the other process or computer is talking about. To be suc-
cessful a description of all commands known by this protocol and a detailed

layout of all fields included in the commands is necessary.

The protocol described on the following pages is not specific to the topic
of this diplomathesis, the secure internet filesystem. Instead it is designed to
be a general purpose transport protocol to exchange data related to filesys-
tem operations efficiently. Also it is not bound to a specific operating system,
but I have used Unix and especially Linux as a source of how things could
be done and which atomic operations are neccessary. As far as possible my
design is compatible to POSIX standards and is abstract enough to be easily

implemented in different operating systems.

Furthermore the filesystem protocol is reduced to the basics, so it can be
used in a lot of ways. For the secure internet filesystem the parts of au-
thentication and encryption are done by the OpenSSH implementation. As
underlying transport protocol the SSH protocol over TCP/IP is used, but
like I said before this separation enables any implementor to build other

components around it and use other underlying transport protocols as well.

5.2.1 Basic thoughts

As I mentioned above, the filesystem protocol is designed to be POSIX com-
pliant where it is possible and reduced to the basic operations. Only where
the POSIX standards doesn’t describe functionality needed or it violates the

"only atomic operations” principle, I will do things in another way.

Unlike the NFS protocol, which is built upon remote procedure calls, the
concept behind this one is the same as used by the IP protocol. Each packet

consists of a well defined set of fields which are arranged to utilize the simi-
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larities of the different commands which simplifies parsing a lot. Each packet
includes a header part, which is the same in each request and reply. Only
the values change. All fields after the header are called payload and the
composition may differ a little bit for each command. The payload consists
of the parameters needed by the server to do its work, retrieve the results
and send them back to the client. Of course, the reply can also contain a
payload like the read operation for example, but it is not sent to the client

if an error occurs.

Another thing I kept an eye on was the fact that all fields are aligned to 32 or
64 bit borders where possible, like in the IPv6 protocol. Modern CPUs can
in this case perform the operations at higher speed due to faster load/store
operations between memory, cache and processor registers. The disadvantage
is an increased resource (memory) usage because of the fact that some fields
are larger than needed. Fields other than strings, which are a concatenation

of bytes, are set in network byte order also known as big endian format.

A very important part regarding the usage of the protocol in this case is
that only the client can send requests. The server itself only handles re-
quests from clients and replies to them, but will never do something without

a former request.

5.2.2 Header

The header of each request consists of three fields: the id, the size and an
opcode field. The header is only 12 bytes long and thus increases the whole
packet moderately.

id |size | opc

Figure 5.8: request header

The reply header is the same as used by a request, but replaces the opcode

by an error code.
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id |size | err

Figure 5.9: reply header

type | description length in bytes
id unique identifier 4
size total size of the payload 4
opc/err | command/error code 4

The first field, the unique identifier, contains an integer which makes it
possible to associate a reply to a former request. If a reply has the same id
as a request sent before, we know that they belong together. The easy way
is to increment the id counter by one for each request. But it is also possible
to implement a different scheme, which provides a more secure way to avoid
attacks. If all ids were used by former requests, the id counter must be reset

and can be incremented again by each request.

The length of a packet is specified by the second integer, which is also 4
byte long. Theoretically, a packet may be 4 GByte long. Thus very big data
transfers can be handled at once, but due to the limited size of memory and
limitations in the underlying protocols a value around 8 KByte is a good size.
This has also been proven a good value by various NF'S performace bench-
marks, but it is only a recommendation, and implementors may change the
buffer size of the client and the server to match their needs. The size includes
the length of the whole payload and excludes the header, which is always 12
byte long.

The opcode/error code field is the last one regarding the header of a re-
quest or reply. If it is part of a request, it contains the operation code shown
in the figures where the different types of requests are described. The value
of the opcodes are always greater than zero and must match one of the known

opcodes. The operations and therefore the numbers follow a simple scheme:
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they are divided into operational areas. Values between 1 and 255 belong
to the filesystem operations like mount and unmount whereas values bigger
than 256 belong to file or directory operations. This scheme will be used
to enable implementors to build fast and simple implementations, which can
utilize tables of pointers to branch to the parsing functions.

If the header is part of a reply, then this field contains the error code sent
by the server. A value of zero is equivalent to no error respectively a suc-
cessful completion of the requested operation whereas a value smaller than
zero (IEEE representation of a negative value) represents a certain kind of
failure. Both, opcode and error code must be sent in network byte order over

the wire.

5.2.3 Strings

The strings utilized by this protocol are used to reference the location of files

and directories on the server.

c|s| string [s | string

Figure 5.10: string representation

type | description length in bytes
¢ number of strings, which will follow 2
S number of bytes the next string contains 2

string | a zero terminated string n

There are only a few rules as to how strings are represented. They are
always located at the end of a packet because their length vary. Thus all
other fields of this packet are at a fixed position, which simplifies parsing.
Furthermore the outline of one string is only a special case of many strings.
The description of strings always begins with the number of strings, which
will follow and is at least one. Then the strings itself are described by the
length (including the trailing zero byte) and the content of the string. A

string always ends with a zero byte like in C. Thus a string sent to the
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communication partner can be used directly as input to system calls. After
the first string more strings may follow which are again described by their
size and their content. The maximum possible size of one string (content
and trailing zero byte) is limited to 1024 bytes. This is a limitation set by
the POSIX standards.

5.2.4 Error codes

Every reply to a former request contains an error number, which is stored in
the header. An error code of zero is equal to a successful completion of an
operation, error codes which are less than zero are equal to a failure. As you
may see in the table below, the error codes are similar to that which are used
by Unix, but divided into error classes to reduce their number. Therefore not
all error codes known by POSIX or other Unix related standards are used.

Instead they are mapped to one of the error classes.

Error code No. Description
SIFS_EOK 0  Operation successful
SIFS_ESERVER -1  Internal server error
SIFS_ENOTSUP -2 Operation is not supported
SIFS_ ENAMETOOLONG -3 Path or filename was too long
SIFS_ENOENT -4  File or directory is unknown
SIFS_EEXIST -5  File or directory already exists
SIFS_ ENOTEMPTY -6 Directory is not empty
SIFS_EPERM -7 Operation denied permanently
SIFS_ETEMP -8  Operation temporarily not allowed
SIFS_EACCES -9 Operation denied due to missing rights
SIFS_EINVAL -10  Argument was invalid
SIFS_.ENOSPC -11  There was no more space available
SIFS_EIO -12 An I/O error occurred
SIFS_EPROTO -13  An protocol error occured

SIFS ESERVER: An error which was not recoverable occured on the

server, like an out of memory condition
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SIFS_ENOTSUP: The operation is not implemented, because the under-
lying system doesn’t support it

SIFS_ ENAMETOOLONG: The underlying filesystem only supports names

(strings) with less characters

SIFS_ENOENT: The string contains a name, which doesn’t exist in the
path to the file, or the file or directory itself doesn’t exist

SIFS_EEXIST: The name already exists at the same position in the filesys-

tem

SIFS ENOTEMPTY: A directory, which should be (re)moved is not
empty

SIFS_EPERM: The permission to perform this operation is denied per-
manently. For example a file which should be modified resides on a read only

filesystem

SIFS_ETEMP: Due to another process or operation the requested oper-

ation can not be performed yet, but will be possible in the near future

SIFS_EACCESS: You do not have the permission to perform this opera-

tion on this file or directory

SIFS_EINVAL: The file is not suitable for this operation or the argument

was out of range

SIFS_ENOSPC: There are no more free blocks on the filesystem or no

more inodes available

SIFS_EIO: The operation could not be completed, because the hardware

was not able to perform this operation correctly
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SIFS_ EPROTO: A protocol violation was detected while processing the

input stream, e.g an invalid opcode or no filesystem is mounted up to now

5.3 Kernel-sifsd transport protocol

By the desicion to source out the SSH stuff including the cryptographic
algorithms into userspace, there is a need for an additional transport protocol
between the kernel of the client operating system and the client daemon
(sifsd). This protocol is responsible for exchanging the parameters used by
the client daemon to establish a connection to the SSH server as well as
forwarding the requests generated by the kernel and returning the replies
from the SSH server. It is also the only way to let the client daemon know,

when it should disconnect and terminate itself at the end of the session.

5.3.1 Basic thoughts

Like the message protocol described in the last section, this transport pro-
tocol also consists of a well defined set fields. Therefore specific parameters,
which are the same in all messages are always stored at the same position.
Thus the same advantages apply to this protocol as listed in the message

protocol section: parsing is easy and a lot of cpu time and memory is saved.

The strings, used by the connect message to transmit the credentials for
the authentication, are encoded as described by the message protocol. A se-
quence of strings is initiated by a two byte field where the number of strings
which will follow is encoded. The next two bytes contain the size of the
string and afterwards the string itself follows including the final ’0’ byte. If
more than one string should be encoded, they will be placed after the end
of the previous string with their size in front of them. Also see the string

description in the message protocol section for further specifications.

By using this protocol there will be situations where errors occur. Perhaps

the connect message failed or the SSH connection to the server screwed up
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and therefore the SSH server terminates the connection. Furthermore it is
possible that the client wants to terminate the old and establish a new con-
nection to the client daemon. In this case the kernel can’t send a disconnect
message, because this would cause the client daemon to exit. In all these
cases the connection is shut down, which signalizes the other communication
endpoint that this connection is terminated, but it is expected that a new
connection will be established by the initiator of the previous connection.
Thus no error messages and message identifiers are required. As this proto-
col is only used to communicate between kernel and client daemon, there will
be no problems like a cut wire, where at least one communication endpoint
doesn’t notice that there is no connection any more. The communication is

only handled by the kernel and doesn’t leave the machine.

5.3.2 Header

To minimize the effect of an additional protocol, which is inserted between
the underlying TCP/IP protocol and the message protocol, the header is re-
duced to only five bytes. This ensures a good header/payload ratio most of
the time, because the size of the message protocol operations is at least 12
bytes and is often longer. The header consists of the size of the transmitted

data and an opcode field, which specifies how this packet should be treated.

size o]

Figure 5.11: header

type | description length in bytes
size | total size of the payload 4
o | command code 1

The maximum size of a packet must not exceed 4 GBytes. In a real en-

vironment, the size of a transmitted packet will probably range from a few
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bytes to the buffer size of the client or server, which should be around 8
KBytes. Furthermore the maximum packet size isn’t related to the maxi-
mum packet size of the message protocol, which is also 4 GByte. Packets
from the message protocol can be split up into several chunks. These frag-
ments are reassembled respectively concatenated before the data is passed
to the message parsing engines. The size includes the payload but not the
header itself, which is five bytes long in all cases. This value must be stored

in network byte order also known as big endian format.
Because of the fact that there are only three types of messages defined by the

protocol (connect, disconnect and data), the opcode field can be very short.

One byte should be sufficient in this case.
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Chapter 6
Implementation

This chapter contains the description of the second big part of the diplo-
mathesis about the Secure Internet File System: the implementation of a

prototype to prove the viability of the concept.

This will be the implementation of a server module for the OpenSSH server,
the client daemon (sifsd) and a kernel filesystem driver for the Linux op-
erating system. Due to the lack of time and the fact that I've invested a
lot of time into the protocol design, the prototype will only be a read-only
filesystem driver and server module. All the basic functionality is already
implemented and it should be easy to exend the current work to get a full
featured client and server. If necessary, I will point out some problems, which

have to be solved on the way to a complete client and server.

6.1 OpenSSH Server Module

The server module for the OpenSSH framework is responsible for performing
operations requested by the clients and returning the result of these opera-
tions. This may contain only the returned status of the performed operation

or additionally include data transfers of file content or file metadata.

61



6.1.1 Description

The main function of the sifs module endlessly calls two functions in a loop
until a fatal error occurs or the connection is closed by the other end. In this
case the program terminates itself. The first function tries to receive a com-
plete header, which is 12 bytes long. The second function is a dispatcher. It
extracts the opcode encoded into the header by using macros which convert
the values into host byte order and use the opcode as an index for a jump
table. This table is programmed as a switch/case statement and created
by the compiler automatically. In different cases statements the appropriate
function is called, which perform the requested operation, like mounting a
filesystem, opening a file or returning the file attributes. All these functions
take only one parameter which is of the same type for all: a structure which
consists of all necessary information needed by the functions. This includes
the file descriptors for input and output, buffers for storing arrived and built
packets, and the path of the directory which is mounted by the client. Fur-
thermore, if such a function is called, the header read by the main loop is

stored into the input buffer.

For a read-only file system, the messages listed below must be implemented
by the server module. For the full list of all available messages and their

description see Appendix A.

SIF'S network messages

mount
unmount
statfs
getattr
readlink
readdir
open
release

read
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All of them perform similar steps now summarized:
First of all the sequence number of the incoming packet is copied to the result
buffer, so that the client can associate the reply to a former request. There
are two buffers available, because the request payload can be used as input
to a function writing directly to the output buffer. Thus it might be possible
to corrupt the input of the function if only a single buffer would be used.
Then they do some checks about the validity of the header, especially about
the packet length: can the packet contain a payload and if yes, does it exceed

the maximum allowed length for such a packet?

In addition, the context is examined. It is for example not valid to send
a request to open a file before the filesystem isn’t mounted. If the valid-
ity checks fail, the remaining packet is consumed (read from the socket), its
content dropped and an error message (a packet, which contains only the
header including the error number) generated and sent to the client. Only
if the header has passed these checks, the remaining bytes are stored into
the request buffer and the content is decoded. Before the parameters in the
content are used to feed the functions performing the requested actions, they
must also pass a few tests. Only then the needed operating system syscalls
are executed with the appropriate parameters. If the parameters are valid
and the system operation has completed successfully, the returned informa-
tion is used to build the reply. If the system call failed for any reason, the
error message returned by the function is mapped to one of the error classes
known by the SIFS protocol and an error message is generated. After the
reply packet (with success or failure messages) is built, it is sent to the client

and the function returns to the main loop.

The SIFS protocol was designed to deal with the situation of a reconnect,
where the server terminates the connection and exits. This is the reason
why the protocol uses file names rather than server side file descriptors to
reference files located on the server even on already opened files. As a con-
sequence, the file offset must be transfered with each read or write message

because no file pointer is maintained per client on the server side.
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Figure 6.1: Open hash table

To access already opened files in a fast way without the availability of
the file descriptor from the client, an ”"open hash table” (hash table without
a limitation in the number of entries) was used. All characters of the file
name and the path are XOR’ed and the resulting eight bits are stored in a
variable. The content of this variable (the digest) is now used as an index
for an array, which contains pointers to linked lists of table entries. Each
node of these lists represent an open file with file name, file descriptor and
usage counter. Therefore, a file must be opened only once on the server.
There are supplementary functions for inserting, removing and retrieving an
entry as well as increasing and decreasing the usage counter of the file. If
the usage counter drops to zero, the file descriptor can be closed and the
entry removed safely from the hash table. In the case of an error the sifs
server modules exits and a reconnect from the client occurs. After that, all
information about previously opened files are lost and the sifs module must
be able to reopen files on read or write requests. For this reason, the sifs
module also has to reply to close requests with a successful completion even

if the file isn’t opened any more.
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6.1.2 Problem

One problem is currently not addressed by the implementation. If a locking
mechanism should be implemented, there is a need for a program, which
performs the locking operations for a user on the server. An external process
is necessary because otherwise the sifs module would wait sending a reply
until the lock is granted, and would therefore block all further operations on
the client filesystem. The process must be able to send the result of a locking
request asynchronously to the sifs module to indicate that the requested lock
is now available. Thus, the main loop must be extended to check for such
callbacks.

6.2 SIFS Client Daemon

Because of the need to keep encryption out of the kernel, there must be a
daemon on the client side, which establishes an authenticated and encrypted
tunnel to the server and forwards all messages between the client and the

server back and forth.

6.2.1 Description

This daemon called sifsd or client daemon is set up by executing the sifs-
client program. It must be executed by a user, who wants to mount a remote
filesystem on his client to a directory of his choice which must be owned by
the user. The parameters, which have to be provided by the user, are the
server name or its IP address, the remote login name of the user and the port
which should be used by the sifs-client program to listen for the connection

from the kernel.

The sifs-client program creates a socket on the loopback device of the client
machine with the given port. This port will then be used to listen for incom-
ing connection requests from the kernel and the resulting connections are one

end points for the messages encapsulated into the packet protocol.
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Figure 6.2: Forked child processes in the sifsd

If a connection request from the kernel filesystem driver arrives, the sifs-
client program forks a child process. This process is responsible for handling
all further data transfers to and from the kernel for this connection. Thus
it also has to create the authenticated and encrypted tunnel to the server
by spanwing a SSH client, which is connected to the child process by socket
pairs. The SSH client on the client machine is executed with the server URL
and the name of the user, who wants to authenticate himself against the
server, as parameters. Furthermore, another few options for the SSH client
are set, among them the option for the request to execute the sifs module
on the server side. The SSH client will ask the user for his password and
will transmit it to the server after establishing an encrypted tunnel. Now,
the child process of the sifs-client program can enter the loop, which checks
for the availability of new messages arriving from the kernel or the server.
This is done by calling select on both socket file descriptors. Select will block
the process until new data is available on one of these descriptors. If select

returns, it has to be examined which descriptor is ready for reading and then
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the message must be received and sent to the other end, either to the kernel
or to the server.

The kernel can send a disconnect message specified by the packet protocol,
which is the signal for the daemon to close the connection to the SSH client
respectively server and terminate itself. After closing the connection to the
SSH client, the client will handle the shutdown message sequence used by the
SSH protocol and finally terminate itself. The other case is the termination
of the connections by the server in case of an error detected by the sifs server
module. Then the sifs-child process, which is responsible for this connection,
must also close the remaining connection to the kernel and initialize itself for

a reconnect from the kernel.

6.2.2 Problem

There seems to be a problem with the SSH client. Reconnecting to the server
is only possible if the user is typing his password again into the prompt.
An automatic input of the password from another program is currently not

possible and seems to require patching the SSH client.

6.3 Kernel Filesystem Driver

The filesystem driver for the Linux kernel acts as a mediator between the
Virtual Filesystem Switch (VFS) layer and the SIFS network messages. It
presents in combination with the VFS layer a view of the remote files and

directories to the applications running on the client.

6.3.1 Description

The SIFS filesystem driver is implemented as module, which can be inserted
into the kernel at runtime. Thus, the module contains functions for register-
ing and unregistering the filesystem implementation in the Virtual Filesystem

Switch (VFS). They are executed by the macros module_init and module_exit
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after inserting respectively removing the SIFS module from kernel space by

the insmod and rmmod programs.

Furthermore, the driver implementation depends on the network function-
ality provided by the kernel like all other network filesystems (NFS, CIFS,
etc). Unlike the others, I decided to place an abstraction layer on top of
the socket implementation of the Linux kernel. This layer provides an inter-
face, which is similar to the system calls used by user space applications, and

this layer should make it easier to port the driver to other operating systems.

SIFSfilesystem driver

Packet protocol

Socket layer

Kernel socket inter face

Figure 6.3: Communication layer between kernel and SIF'S driver

On top of the abstraction layer the packet protocol is implemented, which
is used for the communication to the client daemon. The packet protocol
provides functionality for creating and closing sockets as well as connect,
disconnect, read and write operations. Some of these operations, like cre-
ate or close, are almost directly mapped to the functions of the abstraction
layer, but the rest does a little bit more. After a successful packet_connect
operation for example, it can be assumed that the client daemon already has
established an authenticated and encrypted tunnel and all transmissions by
packet_read and packet_write are safe. Furthermore the packet_disconnect op-
eration causes the client daemon to terminate itself, whereas packet_close only
terminates the connection. In case of packet_close without packet_disconnect,

the client daemon is waiting for a reconnect.
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After describing the dependencies to the other parts of kernel (excluding
the description of the VFS, which was already explained in chapter four), it
is possible to explain the implementation of the filesystem driver in detail. It
should be obvious that the SIFS network messages (see Appendix A) must
be more or less directly mapped to one or more VFS interfaces. There are
the following interfaces and messages, which have to be implemented for a

read-only filesystem:

Linux VFS interface | SIF'S network message
read_super mount
put_super unmount

statfs statfs
getattr getattr
lookup getattr
revalidate getattr
readlink readlink
follow_link readlink
readdir readdir
open open
release release
readpage read
permission locally implemented
iget locally implemented

The functions, which implement the VFS interface are translating the data
returned by the message replies into a format the VFS layer is waiting for.
They either call separate functions, which build the requests and return the

results of the reply or implement them themselves.

The sequence of steps to send a request and process the reply are the same
among all functions. At first, they must obtain some data related to this con-
nection. Especially important is the socket for communication to the server

and the current sequence number for the next request. This information is

69



stored in a structure attached to the superblock, which provides a generic
pointer, where these private data can be placed into by the read_super func-
tion. Because of the fact that applications can access files in parallel, not
only on multiprocessor machines, direct or indirect read and write operations
on the members of the private structure must be protected by a semaphore.
This semaphore is also a member of the structure. Each request for an op-
eration begins by getting the new sequence number from the private data
structure atomically. Only then the header of the request can be set up and
additional parameters can be encoded into the buffer as payload. After the
request packet is completely built, it can be sent to the server. While the
packet is sent and until the reply is completely received the semaphore must
be hold. This ensures that the requests or replies are not mixed with other
ones, which would lead to corrupt data, but also leads to two problems de-
scribed in the next section. The reply should now be stored into the buffer
and can be further examined. In case of a failed operation the error codes
have to be translated to codes known by the kernel. Otherwise, if the reply
contains a payload, it has to be decoded and returned to the calling function

in a format which is understandable by the caller.

Now, after the basic procedure should be clear in principle, each function
implementing VF'S interface can be explained in detail. Because of the nam-
ing policy in the Linux kernel, the function names are prefixed by the name

of the filesystem, which is ”sifs_” in our case.

The first one is sifs_read_super, the function used as entry point to mount
the remote filesystem on the client. It must be declared as entry point by a
special macro (DECLARE_FSTYPE) and is responsible for creating a con-
nection to the server over the client daemon by using the packet protocol.
Thereby it has to parse the options provided by the mount syscall, which con-
tains information about the listening port of the client daemon, the username
and the password for authentication. With this information, it can establish
an authenticated and encrypted tunnel by using the client daemon and send

a mount request to the server by calling sifs_mount. Furthermore, it has to
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request information about the mounted filesystem, which is provided by an
sifs_statfs reply as well as information about the mounted server directory
provided by sifs_getattr. This information has to be filled into the newly cre-
ated root inode respectively the superblock, where also the allocated private
structure containing the connection data, the uid/gid numbers for mapping
and the initialized semaphore, is attached. On a successful operation, the

filled superblock is returned.

Sifs_put_super is the reverse operation to sifs_read_super. It is responsible
for unmounting the filesystem and closing the connection after sending the
client daemon the signal to terminate itself (packet_disconnect ). Furthermore
it has to free the allocated private structure pointed to by the superblock.
The created root inode is freed by the VFS layer if it isn’t used any more.

The implementation of sifs_statfs can be directly mapped to the SIFS statfs
message. It is called by sifs_read_super and if a user wants some information
about the remote filesystem by calling the statfs system call. The purpose of
sifs_statfs is to return the total number of blocks, free and available blocks
as well as the total number of files and available files (inodes). Moreover,
it provides information about the maximum file name length, the preferred
block size and the magic number of the superblock. The preferred block size
is set by sifs_statfs to 8 KB so it does match the optimum found for the NFS
protocol, which is very similar. Moreover the magic number is also set by
sifs_statfs, which distinguishes slightly different filesystem implementations
of the same type. Originally the magic numbers were established by Minix,

the operating system created by Andrew Tannenbaum.

Lookup returns the attributes for a given file name, filled into an inode created
by sifs_iget (described later). It also adds the file name and the correspond-
ing inode to the dentry cache. If the lookup failed, a negative dentry with
no inode pointer is added. Like revalidate, it calls getattr directly, because
up to now no cache is maintained by the driver. The getattr reply returns

various information about the requested file, like the mode bits, the number
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of links, uid and gid numbers, time information (create, access and modify
timestamp) and the size of the file. Getattr is also responsible for the map-
ping of the uid and gid numbers between the client and the server. This
ensures that the files on the server, which belong to the authenticated user
can only be accessed by the user and his primary group on the client. All
other files on the server appearing locally are mapped to the root account,
but are not accessible by the super user, because the server module only has

access to the files of the authenticated user.

The readlink and follow_link functionality is implemented into the VFS layer.
They only need the link content provided by the SIFS readlink message,
which is implemented by sifs_getlink.

Readdir is a little bit more complex. After the SIFS readdir reply is re-
ceived by sifs_readdir, the encoded file or directory name strings must be
translated into an appropriate format for the VFS layer. The VFS layer
provides a pointer to a function, which accepts one string entity and a few
more parameters for storing the names into the dentry cache and providing
them to user space applications on request. The cache must be filled with
the names starting at a given position until all names are inserted. The type
of inodes related to the names filled in is normally not known. Therefore,
the VES layer will ask lookup for this later.

The open and release implementations are obvious. They only return the
successful completion of an operation or an appropriate error message to the
caller and are not responsible for any file descriptors. Instead the whole work

is done by the server and the VFS layer.

The last category of functions related to SIFS network messages are the
address space operations. Some of them are implemented by the VFS layer,
but for the read-only filesystem the implementation of sifs_readpage is neces-
sary. Sifs_readpage calls subsequently sifs_read, which implements the SIFS
read request, until a complete memory page (usually 4 KB) is filled. Then
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the page flags are updated and all remaining errors cleared. The page con-
tent representing a portion of a file is now ready for usage by applications.

For the permission function an equivalent SIFS message doesn’t exist. It
is responsible for examining the mode bits of a file and granting or denying
access to an application. Because the SIFS doesn’t implement extended fea-
tures based on rules - like Access Control Lists (ACLs) for example - which
allows or denies specific operations (append, delete or others) yet, it can
rely on the VFS implementation of permission. Especially after the uid/gid
mapping done by getattr, it can be assumed that only authorized users and
groups can access the remote files, because then the traditional Unix seman-

tics is trustworthy.

A special case is also the implementation of sifs_iget, which is usually imple-
mented by the VFS layer. Traditional Unices and therefore also the Linux
VFS layer use the term ”inode” for a data structure, which contains all in-
formation about a file or directory on a filesystem. The different instances of
this data structure represent the files or directories located on the filesystem
and are identified by a unique inode number (unique on the filesystem). On
filesystems, which don’t use inode numbers like Microsoft’s FAT filesystem,
or filesystems, whose inode numbers are not unique on the local machine
as in network filesystems, unique numbers must be created by the kernel.
The root inode of a filesystem is the only exception: it always uses a fixed
number, e.g. 71”7 or 72”. Sifs_iget is thus responsible for creating a new
inode structure and filling it with the appropriate values. Furthermore, it
has to examine the type of inode (file, directory or symlink) and store the

appropriate structures holding the specific function pointers in the inode.

6.3.2 Problem

In the current implementation of the read-only filesystem the functions called
by the VFS layer, lock the socket for the server connection by setting a

semaphore before sending a request and releasing the semaphore after re-
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ceiving the complete reply. In fact, they keep the socket locked until the
transaction is complete. Thus, it is currently not possible to implement
the sifs_lock function, which requires asynchronous replies until the locking
scheme is more fine grained. The server normally wouldn’t send a reply in
case of a lock request until the lock is granted, except the lock request was
a non-blocking request. Therefore, all further operations on the mounted
filesystem would block until the lock is granted. This means that the filesys-
tem is unusable in the meantime. In addition, locking the socket until the
reply arrives decreases the performance drastically if several applications per-
form operations on the filesystem provided by the SIF'S kernel driver. They
have to wait until a transaction is complete, independent of the time it will

last and can not perform operations in parallel.

The solution would be the implementation of a read and a write semaphore
instead of a single one. Sending requests and receiving replies can then be
done independently by more than one filesystem operation. Furthermore, it
is necessary to implement a dispatcher for all replies from the server, which
must be able to receive the reply packets and distribute them to the waiting
filesystem functions based on their sequence number. One possibility would

be a solution based on semaphores.
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Chapter 7

Test

Finally, the implementation have to be tested and remaining bugs must be
fixed. This chapter contains a description of the testing environment as well
as the description of the tests of the modules. At the end, after all module
tests are done, there is also an integration test including all components using

real world data, where the whole implementation must prove its viability.

7.1 Environment

The development was done on a single machine, which was also be used as a
testing bed for the server module, the kernel filesystem driver and the client
daemon (sifsd). The installed Linux distribution on this machine was Redhat
7.2 which was updated to the latest patches, including a new kernel version.

Thus, the following version were used for development and testing:
e kernel-2.4.9-13
e openssh-2.9p2-12
e gcc-2.96-98

All source code related to the kernel filesystem driver was compiled as
module, which can be inserted into the kernel at runtime, and with default

flags used by the kernel make file.
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Finally, for the final integration test over the network, a second machine
was needed. This computer contained an image of a Redhat 7.0 installation
without any patches and was only used for the network test. Thus, the only
interesting software package on this machine is the OpenSSH server package,
whose version was 2.1.1p4-1. Both machines, the computer used for devel-
opment and the second machine for the network test were built on the Intel

x86 architecture.

7.2 Procedure

The test only consisted of a functionality test, proving the correctness of the
software implementation. It didn’t contain a performance test, which bench-
marks the execution speed of the operations.

To understand the steps performed by the implemented software, no mem-
ory debugger was used. Instead, various profiling information was inserted
into the source code. This profiling code consists of macros, which print the
current action and interesting parameters to the screen. The profiling output
can be enabled by defining SIFS_PROFILE at compile time, otherwise the
compiler generates a binary without any profiling data. Moreover there are
error messages displayed if something failed, but they can be also suppressed
by erasing the ”SIFS_DEBUG” macro.

Both component tests, the test of the server module and the test of the
kernel filesystem driver, were done by feeding the modules with input pack-
ets and examining the resulting output. For each type of network message
described in the appendix and implemented by the server and kernel mod-
ule, there was a generated test packet as input. Therefore, test programs for
automating this process were written, sending valid packets to the modules
and displaying the output in an human readable form. After the remain-
ing bugs were fixed and the output was equivalent to the expected one, the

test programs were modified to generate packets with errors to examine the
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behavior of the server and kernel module. The errors were introduced by
hand in random fields of the packets, but not all error cases are tested in
all functions. Then, after fixing errornous behavior in the tested code, the
packet fields were reset to correct values and the test was executed a last
time. All these tests were performed on a single machine with the usage of

the loopback network device, thus no second computer was needed up to now.

For the final integration test an environment containing real data was used, in
this case directories created by the Linux distribution on the computer where
the software was developed. First of all the low level parts of the client dae-
mon, like the packet protocol and its interface to the remaining client daemon
code, were tested in conjunction with the kernel module. This test was ex-
tended successively by adding the server module without the usage of the
OpenSSH until the client daemon forwards all requests and replies based on
real data without errors. Finally the direct connection from the client dae-
mon and the server module was replaced by an OpenSSH connection. This
connection was established over an ethernet network from the development

computer to the server machine, where Redhat 7.0 was installed.

7.3 Conclusion

After finishing the tests, the implemented software is of good beta quality
and is ready for testing in a wider public. There are only two problems
currently not fixed: the number of links to a file or directory is not shown
correctly and the OpenSSH server seems to stop forwarding replies to the

client after a certain amount of bytes.

The first problem, the number of links is related to the VFS/driver interac-
tion. The VFS interface doesn’t provide the possibility to return the number
of links by a call to getattr. Thus, their number is known after a getatir
request by the filesystem driver, but it can not tell this information the VFS
directly. It seems to me that this is handled in another way currently not

known by me.
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The other problem regarding the OpenSSH server is much more important.
By performing actions on the client machine, which requires several requests
and replies (around 23 or 24), the server stops forwarding the next reply to
the client machine. Up to now I don’t know why, but I'm sure the problem is
either due to a mistake of myself in the code of the sifs-client or a bug in the
OpenSSH software. If the client daemon creates the server module locally
without OpenSSH client and server, all requests and replies are forwarded

correctly without limitations.
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Chapter 8
Perspective

Up to now there is only a prototype for a read-only filesystem implemented.
The whole functionality for creating, deleting or writing into files or directo-
ries is currently missing respectively there are only the function stubs avail-
able. The implementation of these functions on the client and the server
side can be done rather quickly within a few weeks, but the real problem is
the implementation of the lock call, which is very different from other calls,
because of its asynchronous nature. The lock message requires the kernel
driver to send a request to the server without blocking other requests while
waiting on the reply. Therefore the implementation of the dispatcher for the
replies from the server mentioned at the end of the implementation chapter
is absolutely necessary, but requires a lot of additional thoughts The server
module also needs some special code in form of a separate process handling

these lock requests and it will cost some time implementing it too.

Furthermore the current implementation is not optimized for speed and con-
tains no caches. These caches, when they are implemented, could be used to
save recently requested file attributes for speeding up the revalidate call or to
store the result of a readdir call for a certain amount of time. There may be
a wide field for optimizations and good references are the implementations
of the NFS, SMB and NCP filesystem driver in the Linux kernel.
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The last thing required would be the patching of the OpenSSH client, be-
cause it doesn’t accept the password on stdin yet. This leads to problems
when an error occurs and the kernel filesystem driver has to reconnect to the
server. In this case, the SSH client requests the user to type in his password
on the terminal again instead of taking the password as input from the parent

process (the client daemon).
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Appendix A

SIFS message protocol

description

A.1 Filesystem related operations

There are only three filesystem related operations: mounting, unmounting
and stating a filesystem. The mount operation connects a part of the server
filesystem tree to the local tree on the client. Unmount is the opposite op-
eration, because it removes mount points previously installed by the mount
operation. Without them the client would not be able to perform further
operations on files and directories which reside on the server or make a clean
disconnect at the end. Thus, file or directory operations will always fail with-
out a previously sent mount command and all requests sent after an unmount

are also invalid. Finally, statfs returns information about the filesystem.

A.1.1 Mount

Description:

The client requests for allowance to access a directory and its subdirectories
on the server by using the specified version of the protocol. Depending on
the access rights of the user on the server or an unsupported protocol version,

it may be denied by the server. Furthermore, only one mount operation per
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connection is allowed and therefore only one directory per child process on
the server can be exported. Thereby a new connection must be established

for each new mount operation.

Request:

id |size 1 ver |c [s | string

Figure A.1: mount request

type | description length in bytes

ver | protocol version 4

The protocol version specifies which version the client is able to speak. If
this version is not supported by the server, an error will be returned and
the client may decrease the version number and retransmit the request if
supported. The string contains the path which is used as the new working

directory for all further requests.

Reply:

id |[size | err [ uid | gid

Figure A.2: mount reply

type | description length in bytes
uid | user id 4
gid | primary group id 4
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The returned numbers are the user and group ID of the user who logged
into the server and are used to map the IDs between the client and the server.

error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_LENOENT A path component is not a directory
SIFS_EACCES Mounting is denied due to missing rights
SIFS_ENOTSUP Protocol version is not supported
SIFS_ESERVER Internal server error

On success, zero is returned in the error field, otherwise it is set to one of

the listed error numbers.

A.1.2 Unmount

Description:
Removes a mount point on the server which ist then not accessible by the
client any more. This call is used to initiate a clean shutdown. If this call is

successful, the connection must be terminated.

Request:

id |size 2 |c|s | sring

Figure A.3: unmount request

The string contains the location of the directory, which is mounted by the
client. The server is requested to no longer export the mount point to this

client and is advised to free its resources related to the mount point.

Reply:
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id |size | err

Figure A.4: unmount reply

error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT Directory wasn’t mounted previously
SIFS_ESERVER Internal server error

On success, zero is returned in the error field, otherwise it is set to one of

the listed error numbers.

A.1.3 Statfs

Description:
Returns various information about the mounted filesystem.

Request:

id |size 3 |c|s| string

Figure A.5: statfs request

This request contains a path to an existing file on the server. The filesystem
where this file resides will be queried for various information and these values

are returned.

Reply:
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id |size | err |bsize|btot |bfree[bavl | ftot |ffree|nlen

Figure A.6: statfs reply

type | description length in bytes
bsize | preferred block size 4
btot | total number of blocks 4
bfree | number of free blocks 4
bavl | number of available blocks 4
ftot | total number of files 4
ffree | number of free files 4
nlen | max. file name length 4
error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EACCES Search permission is denied for this path
SIFS_EIO An I/O error occurred
SIFS_LENOTSUP Operation not supported
SIFS_ESERVER Internal server error

On success "statfs” returns zero, otherwise one of the error numbers listed
above is returned. Furthermore ”statfs” returns various information about
the blocks and files, which are available and free. The available number of
blocks may be less than the total number of blocks, because Unix filesystems
normally preserve a small amount of space, which is only available for the
administrator. Moreover the maximum length for file names is included in

this reply.
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A.2 1Inode related operations

The word ”inode” is as a generic term for both file and directory objects.
This term is often used in documents related to the Unix virtual filesystem

(VFS) and I will continue to use it here.

All operations described below can be performed by specifying the loca-
tion of an inode which is described by its name. Even those requests, which
are stateful like read or write do not need to pass a file descriptor. Instead
the file descriptors are stored on the server side and only the string which
contains the location of the file or directory is transferred. This eases error
handling a lot. In case of a recovery from a disconnect, there are no invalid

file descriptors from the server stored on the client side.

A.2.1 Open

Description:

”Open” ensures that the file described by the given file name exists and is
accessible by the user who wants to perform subsequent operations on this
file. This call also compares the requested rights (read, write or both) with
the file permissions attached to this file. Despite the POSIX open syscall
this operation doesn’t return a file descriptor which is normally used as a
reference for further access to files. Instead all operations will use the file
name for subsequent access. This is because a file name will not become

invalid in case of a disconnect/reconnect caused by an error.

Request:

id |size [ 258 [ O |[flags|c s | string

Figure A.7: open request
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type

description

length in bytes

0
flags

32 bit representation of zero for padding

open mode

4
4

The string points to the file (regular or special file) which should be opened.
The flags specifies the access mode which is used to open the file. Possible
values are 0 for read access only, 1 for write access only and 2 for both
read and write access.
values 04000 for nonblocking access (return an error, if open or subsequent

operations would block) and 010000 for synchronous file operations (call will

Furthermore these bits can be or’ed with the octal

block until all data is written to the underlying medium).

Reply:

id |size | err

Figure A.8: open reply

error number description

SIFS_LENAMETOOLONG

Pathname ”string” was too long
SIFS_ENOENT The file doesn’t exist
SIFS_ ETEMP
SIFS_EACCES

File access is currently not possible

File access is denied due to missing rights
SIFS_ESERVER Internal server error

On success "open” returns zero, otherwise one of the error numbers listed

above is returned.

A.2.2 Create

Description:
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Creates a new entry for a regular file on the filesystem. Unlike Unix creat(),
it doesn’t return a file descriptor on success. Furthermore, only regular text
or binary files can be created by this call. If special files like pipes should be

created, use mknod instead.

Request:

id |[size | 259 [model O |c|s | string

Figure A.9: create request

type | description length in bytes
mode | the posix file mode attributes 4
0 32 bit representation of zero 4

Parameters are the create mode, a zero value for padding and a string.
The mode argument specifies the permissions which are granted in case of
further access, but may be altered by the server. The three least significant
bits (000X) are used to describe the access rights of all users, the next three
bits (00X0) to describe the rights of the users which are in the same group
as the creator and the third three bits (0X00) to describe the access rights,
which are granted to the creator himself. The access rights are split into the
read, write and execute permission. Read is represented by the octal value of
four, write by two and execute by one. They may be or’ed (e.g. 04 and 02 =
06) to get read/write access or any other combinations of access rights. All
other remaining bits must be set to zero. The described mode is the same as

specified by the POSIX standard and used by all Unix implementations.

Reply:

90



id |size | err

Figure A.10: create reply

error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long

SIFS_ENOENT A path component doesn’t exist
SIFS_EEXIST File already exists

SIFS_EPERM File creation is denied permanently
SIFS_EACCES File creation is denied due to missing rights
SIFS_ENOSPC There was no space for a new file available
SIFS_ESERVER Internal server error

On success, zero is returned in the error field, otherwise it is set to one of

the listed error numbers.

A.2.3 Mkdir

Description:

Creates a new directory inode on the filesystem at the specified location.

Request:
id |size | 260 [model O |c|s | string
Figure A.11: mkdir request
type | description length in bytes
mode | the POSIX file mode attributes 4

0 32 bit representation of zero 4

91



Like "create” for regular files, the mkdir request contains the mode of the
newly created directory, a zero value for padding and the string representa-
tion for the path. For a description of the mode bits look at the description
of the create request. Instead of execute permission, user can get the right

to search (traverse) the tree. The submitted mode may be altered by the

server.
Reply:
id |size | err
Figure A.12: mkdir reply
error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EEXIST Directory already exists
SIFS_EPERM Creation is denied permanently
SIFS_EACCES Creation is denied due to missing rights
SIFS_ENOSPC There was no inode for the directory available
SIFS_ESERVER Internal server error

The reply of the server will be zero on success or one of the error numbers

listed in the above table on failure.

A.2.4 Mknod

Description:

Creates an inode, which may be a device special file or a named pipe. This
request is optional, because it is Unix specific and not described by a POSIX

standard.
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Request:

id |size

261

mode|

dev

string

Figure A.13: mknod request

type | description length in bytes
mode | the device type and posix file mode attributes 4
dev | major and minor number of the device 4

The access rights, which are part of the "mode” field are the same as de-
scribed by the create request. Additionally the type of the newly created
special file is encoded into the mode as well. Possible octal values are 010000
for a named pipe (fifo), 020000 for a character special file and 060000 for
a block special file. These bit masks have to be or’ed with the masks rep-

resenting the access rights. Also the access rights may be modified by the

server.

The field ”dev” contains the major and minor number of the new device

if a character or block special file should be created. Otherwise it is ignored.

Reply:

size

Figure A.14: mknod reply
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error number description
SIFS_EINVAL Mode argument was invalid
SIFS_ ENAMETOOLONG | Pathname ”string” was too long

SIFS_LENOENT A path doesn’t exist

SIFS_EEXIST File already exists

SIFS_EPERM Operation is denied permanently
SIFS_EACCES Creation is denied due to missing rights
SIFS_ENOSPC There was no inode available for a new file
SIFS_ENOTSUP Operation is not supported
SIFS_ESERVER Internal server error

The reply to a mknod call contains zero on success or one of the above

error numbers on failure.

A.2.5 Release

Description:

All files opened previously must be closed. This operation acts as a signal
to the server that the reference counter for the file can be decremented, and

if the counter reaches zero, the file can be finally closed.

Request:

id |[size | 262 [c s | string

Figure A.15: release request

The only parameter for a "release” request is a file name of a previously
opened file.

Reply:
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id |size | err

Figure A.16: release reply

error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_LENOENT The file was not opened previously
SIFS_EIO An I/O error occurred
SIFS_ESERVER Internal server error

On success "release” returns zero, otherwise one of the error numbers listed

above is returned.

A.2.6 Unlink
Description:
Deletes a file name from the filesystem. If hard links are supported and

this name isn’t the last one referring to the specified file, then all used blocks

on the medium arn’t freed. Otherwise, the used blocks are freed immediately.

id |[size | 263 [c s | string

Figure A.17: unlink request

The unlink request is rather simple. It only contains a string, which is
used to reference the file which should be deleted.

id |size | err

Figure A.18: unlink reply
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error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long

SIFS_ENOENT A path component doesn’t exist
SIFS_EPERM Deleting a file is denied permanently
SIFS_.ETEMP File is currently used by another process
SIFS_EACCES Deleting a file is denied due to missing rights

SIFS_EIO An I/0O error occurred
SIFS_ESERVER Internal server error

On success zero is returned otherwise one of the error numbers listed

above.

A.2.7 Rmdir

Description:

Deletes a directory name on the filesystem. The directory must be empty

for a successful reply.

Request:

id |[size | 264 [c s | string

Figure A.19: rmdir request

Like the unlink request, "rmdir” is pretty simple. The only argument is

the string which points to the directory which should be removed.

Reply:
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id |size | err

Figure A.20: rmdir reply

error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EPERM Operation is denied permanently
SIFS_ETEMP Directory is currently in use
SIFS_EACCES Operation denied due to missing rights
SIFS_ ENOTEMPTY Directory is not empty
SIFS_ESERVER Internal server error

On success "rmdir” returns zero, otherwise one of the error numbers listed

above is returned.

A.2.8 Link

Description:

"Link” creates a new name entry in the filesystem for an existing file. This
is also known as creating a "hard link” to an existing file. Note that hard

links - unlike symbolic links - can not span filesystems.

Request:

id |[size | 265 [c |s | string [s | string

Figure A.21: link request
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The link request consists of two strings: the path to the existing file and
the path of the new link. Both can be relative or absolute paths. If the new

link name already exits, it will not be overwritten.

Reply:
id |size | er
Figure A.22: link reply
error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EPERM Creating a link is not supported
SIFS_EACCES Creating the link is denied due to missing rights
SIFS_EEXIST File already exists
SIFS_ENOSPC There was no space for a new file available
SIFS_EIO An I/O error occurred
SIFS_ESERVER Internal server error

On success ”link” returns zero, otherwise one of the error numbers listed

above is returned.

A.2.9 Symlink

Description:

Creates a new filesystem entry, whose content points to another file or
directory. This symlink may point to a nonexistent file or directory and is in
this case named a dangling link. Unlike hard links, symlinks are interpreted

at run time by the operating system. The permissions of a link are checked if
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the link itself should be modified (renamed, deleted or the content modified).
They are not checked if the file or directory where the link points to should
be accessed. Instead, the permissions of the referenced file are used.

id |[size | 266 [c |s | string [s | string

Figure A.23: symlink request

The first string contains the path where the symlink points to, which is
also known as the referenced file. The second string is the name (and path)

of the symlink file, which will contain the first string.

Reply:
id |size | err
Figure A.24: symlink reply
error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EPERM Creating a symlink is not supported
SIFS_EACCES Creation denied due to missing rights
SIFS_EEXIST File already exists
SIFS_ENOSPC There was no inode for a new symlink available
SIFS_EIO An I/O error occurred
SIFS_ESERVER Internal server error

On success ”"symlink” returns zero, otherwise one of the error numbers

listed above is returned.
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A.2.10 Readlink

Description:

Returns the contents of the given symbolic link. This request is optional

because it is not described by a POSIX document.

Request:

id |[size | 267 [c s | string

Figure A.25: readlink request

The string contains the path of the symlink file, which points to the original
file.

Reply:
id |[size [ err [c|s | string
Figure A.26: readlink reply
error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_.ENOENT A path component doesn’t exist
SIFS_EINVAL Not a symbolic link
SIFS_EACCES Operation is denied due to missing rights
SIFS_EIO An I/O error occurred
SIFS_ESERVER Internal server error

On success "readlink” returns zero, otherwise one of the error numbers
listed above is returned. If the request was successful the reply contains the

content of the symlink (the path to the referenced file).
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A.2.11 Rename

Description:
Renames an existing file or directory and moves it between directories if
required. If the file which should be renamed is a symlink then the symlink

is renamed, not the referenced file.

Request:

id |size | 268 [c |s | string [s | string

Figure A.27: rename request

The first string contains the path of the old (existing) file name, the second

one of the new path.

Reply:
id |size | er
Figure A.28: rename reply
error number description
SIFS_.ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EPERM Operation is denied permanently
SIFS_ETEMP Operation is currently not possible
SIFS_EACCES Renaming is denied due to missing rights
SIFS_EINVAL Invalid argument
SIFS_ENOSPC There was no inode available
SIFS_ESERVER Internal server error
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b

On success

listed above is returned.

A.2.12 Truncate

Description:

Truncates a file to the given size. All data, which was stored behind this
size is lost after this call. If the file was smaller than the given size, the result

is operating system dependent. Either the file is left unchanged, or the file

‘rename” returns zero, otherwise one of the error numbers

is extended to this size and filled up with zero bytes.

Request:

id |[size | 269

length

c|s | sring

Figure A.29: truncate request

type

description

length in bytes

length

new length of the file 8

As parameter the length of the new file and the file name is put into the

request.

Reply:

size

Figure A.30: truncate reply
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error number description
SIFS_.ENAMETOOLONG | Pathname ”string” was too long

SIFS_LENOENT A path component doesn’t exist
SIFS_EPERM Operation is denied permanently
SIFS_ETEMP Operation is currently not allowed
SIFS_EACCES Truncation is denied due to missing rights

SIFS_EIO An I/0 error occurred
SIFS_ESERVER Internal server error

On success "truncate” returns zero, otherwise one of the error numbers

listed above is returned.

A.2.13 Getattr

Description:

Returns the attributes of the specified file, which are also known as the

meta data of a file.

Request:

id |[size | 270 [c s | string

Figure A.31: getattr request

The string parameter specifies the file whose attributes should be returned.

Reply:

id |[size | err [mode| nlink| uid | gid | at mt | ct size

Figure A.32: getattr reply
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type | description length in bytes
mode | POSIX file access mode 4
nlink | number of hard links 4
uid | user id number 4
gid | group id number 4
at last access time 4
mt | last modification time 4
ct creation time 4
size | size of the file in byte 8
error number description
SIFS_.ENAMETOOLONG | Pathname ”string” was too long
SIFS_ENOENT A path component doesn’t exist
SIFS_EACCES Access is denied due to missing rights
SIFS_ESERVER Internal server error

On success ”getattr” returns zero, otherwise one of the error numbers listed
above is returned. Furthermore various attributes about the file are sent back
by this reply. The possible access rights are described in the section about the
"create” request. Additionally this field is or’ed with the type of that file. All
possible bit masks for the known file types are described in the table below.
The second field in the reply payload contains the number of hard links to a
file respectively the number of subdirectories, if the given path referes to a
directory. Also the user and group id numbers of this file are returned. These
are the raw numbers and will probably differ from these known by the client
or mapped to the false user. Therefore it is the job of the client to modify
them as needed before they are used for granting or denying further access.
Access to the files on the server is only granted if the rights of the user who
mounted the filesystem allow this. The three time fields contain the number
of seconds for the creation, last access and last modification since the Epoch
(00:00:00 UTC 1970-01-01). The last field represents the current file size in
bytes.
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bit mask (octal) | description
0140000 socket,
0120000 symbolic link
0100000 regular file
0060000 block device
0040000 directory
0020000 character device
0010000 fifo

A.2.14 Setattr

Description:

Sets new attributes for the given file. This call can change all attributes
returned by the getattr request without the number of hard links and the
size of a file. This can only be done by creating or removing subdirectories

respectively invoking a truncate call or appending data at the end of the file.

Request:

size

271 | mode| uid

gid

at mt

string

Figure A.33: setattr request

type

description

length in bytes

mode
uid
gid
at
mt
ct

POSIX file access
user id number
group id number
access time
modification time

creation time

mode 4

I N N
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For a description of the file access modes see the ”getattr” section. The
uid and gid can only be changed, if root was the user who mounted the
filessystem. Furthermore the access and modification time can be changed,
but the creation time is set by the operating system and normally can’t be

updated later by the user. In this case the value should be ignored.

Reply:
id |size | err
Figure A.34: setattr reply
error number description

SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_LENOENT A path component doesn’t exist
SIFS_EACCES Access is denied due to missing rights
SIFS_ESERVER Internal server error

On success ”setattr” returns zero, otherwise one of the error numbers

listed above is returned.

A.2.15 Readdir

Description:

Returns the names of all entries located underneath the given directory.

Request:

id |[size | 272 [c s | string

Figure A.35: readdir request
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The ”readdir” request contains only a directory name used to get all entry

names underneath.

Reply:
id |[size [ er |c|s| string [s | string
Figure A.36: readdir reply
error number description
SIFS_.ENAMETOOLONG | Pathname ”string” was too long
SIFS_LENOENT A path component doesn’t exist
SIFS_ EACCES Access is denied due to missing rights
SIFS_ESERVER Internal server error

On success "readdir” returns zero, otherwise one of the error numbers listed
above is returned. On success, one or more strings containing the names of

the entries located underneath the requested directory are returned.

A.2.16 Read

Description:

Reads some data from the given file. This request is only valid if the same

file was previously opened by the "open” request.

Request:

id |[size | 273 offset size c|s | string

Figure A.37: read request
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type | description length in bytes

offset | position where to begin 8

size | number of bytes to read 8

To read a number of bytes from a file, an offset must be given which
describes the position of the first requested byte and the number of bytes
(size) which should be read.

Reply:
id |size | er size data
Figure A.38: read reply
error number description
SIFS_ ENAMETOOLONG | Pathname ”string” was too long
SIFS_LENOENT The file was not opened previously
SIFS_EIO An I/O error occurred
SIFS_EINVAL Invalid argument
SIFS_ESERVER Internal server error

On success "read” returns zero, otherwise one of the error numbers listed
above is returned. Furthermore the requested data and their size is returned.
This size may differ from the size initially sent, if there is less data available

or the buffer on the server side was not big enough.

A.2.17 Write

Description:

Write the given data to the file on the server. This request is only valid if

the file was previously opened by the "open” request.
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Request:

id |[size | 274 | fd offset size c|s | string data

Figure A.39: write request

type | description length in bytes
offset | position where to begin 8
size | size of the data 8
data | new file content n

The offset specifies where to begin writing the data and size must be equiv-
alent to the length of the given data.

Reply:
id [size | err size
Figure A.40: write reply
error number description
SIFS_LENAMETOOLONG | Pathname ”string” was too long
SIFS_LENOENT The file was not opened previously
SIFS_EIO An I/O error occurred
SIFS_EPERM Operation is denied permanently
SIFS_EINVAL Invalid argument
SIFS_ENOSPC There was no more space available
SIFS_ESERVER Internal server error
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On success ”write” returns zero, otherwise one of the error numbers listed
above is returned. Furthermore the size of the data written to the storage
medium is returned. This size may differ from the size initially sent, if there
was less space available. If the data is written only partly, the operation

returns no error.

A.2.18 Fsync

Description:
Writes all data related to this file (meta data and payload), which are
cached by the operating system to the stable storage medium. This request

returns after this operation is completed and is only valid on previously

opened files

Request:

id |[size | 275 [c s | string

Figure A.41: fsync request

The string points to the open file whose content should be flushed to the

stable storage medium.

Reply:

id |size | err

Figure A.42: fsync reply
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error number description
SIFS_.ENAMETOOLONG | Pathname ”string” was too long

SIFS_ENOENT The file was not opened previously
SIFS_EPERM Operation is denied permanently
SIFS_EIO An I/O error occurred
SIFS_ESERVER Internal server error

On success "fsync” returns zero, otherwise one of the error numbers listed

above is returned.

A.2.19 Lock

Description:
Manage file locks for the given file. These locks can be held on the whole
file or just on a part of it specified by a begin and end offset. This request is

also only valid on previously opened files.

Request:

id |[size | 276 [cmd [type [flags | pid start end c|s| sring

Figure A.43: lock request

type | description length in bytes

cmd | get and set commands 4
type | Type of the set command
flags | flags which are currently set
pid | process id holding the lock
start | lock begin offset

end | lock end offset

0 00 = =
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The ”Cmd” field of the lock request can be set to three different values:
0x1 to get lock information about a file, 0x2 to set a new lock and return in
the case of an error and 0x3 to set a new lock and wait if another process
holds a lock on the file. If the server should wait until an existing lock is
released, it will not return a reply until this happens. If a new lock should be
set, then a type have to be specified. Possible values are 0x0 for unlocking,
0x1 for a read lock and 0x2 for a write lock. The flags as well as the process
id must be set to zero and will be overwritten by the server. Moreover, the
lock can be limited to a region of the file by specifying the start and the end
offset.

Reply:
id |size | err |type |flags| pid start end
Figure A.44: lock reply
error number description
ENAMETOOLONG | Pathname ”string” was too long

ENOENT The file was not opened previously
ETEMP Currently no more locks are allowed
EACCES Another process already holds a lock
ESERVER Internal server error

On success ”lock” returns zero, otherwise one of the error numbers listed
above is returned. The reply also contains the values sent, but they may be

modified by the server.
The pid (id of the process holding the lock) returned should be unique on

the client and server. This may lead to some problems if processes resides on

another computer because there is no global process space, but usually only
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two bytes of the pid are used. Thus the remaining two bytes may be used
by the server to describe the computer where the locking process resides.
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Appendix B

Kernel-sifsd transport protocol

description

This sections contain the description of the message types used for commu-
nication between the kernel filesystem driver of the client operating system
and the client daemon (sifsd). Also the rules are described when a particular

message is allowed and who may send it.

B.1 Connect

The connect message signalizes the client daemon to initiate a connection to
the remote SSH server. Thus, it includes the credentials to authenticate itself

to the client daemon (sifsd). This message can only be sent by the kernel.

size 0] cnt | len username len password

Figure B.1: connect message

The payload of this message consists of two strings: the username and
the appropriate password used for authentication. If another method instead
of a username/password combination is used like the public key mechanism,
then the password field contains a random string. It is provided by the user

through the mount command as an option. The leading thought behind

114



the idea is to authenticate the kernel-sifsd (client daemon) connection and
providing the shared secret to the client daemon. This prevents an attacker
from connecting to the client daemon, establishing a connection to the server

and getting access to the files owned by the user.

B.2 Disconnect

The disconnect message causes the client daemon to shut down all connec-
tions and exit. By unmounting the filesystem, the user started the clean up
procedure where the disconnect message is a part of it. This message can

also only be sent by the kernel to the client daemon.

size 1

Figure B.2: disconnect message

There are no parameter for the client daemon beside the header.

B.3 Data

Because the client daemon is responsible for forwarding all data transfers
between the SSH server and the kernel, a data message is necessary. It can
be sent by both parties (filesystem driver and sifsd) to each other.

size 2 payload

Figure B.3: data message

The payload of this message contains the data, which should be sent to the
SSH server or to the kernel. Its maximum length is limited to 4 GByte, but
normally its size is limited by the used buffer size of the kernel or the client
daemon. The data is transported as provided by the sender. No modification

is allowed.
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